

NATIONAL OPEN UNIVERSITY OF NIGERIA
PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA
FACULTY OF SCIENCES
DEPARTMENT OF PHYSICS
2025_1 EXAMINATION

COURSE CODE: **PHY405**

COURSE TITLE: **ELECTRONICS III**

CREDIT UNIT: **3**

TIME ALLOWED: **(3 HRS)**

INSTRUCTION: *Answer question 1 and any other three questions*

Question 1

i.	Can 5673 be an octal number	3marks
ii.	Divide 111001.00 by 1100	3marks
iii.	Convert the following decimal to binary 527, 327,73	6marks
iv.	Using logic gate design $Y = (A+B) C$ and $Y = AB + CD$	6marks
v.	Design the XOR truth table	2marks
vi.	State the functions of the Cathode ray oscilloscope	5marks

Question 2

i.	What are counters?	4marks
ii.	Design a shift left to register and show the clock trigger output	5marks
iii.	Draw the logic circuit for the original and simplified expression $Y = ABC + BC + AD$. 6marks	

Question 3

i.	What is an Analog Digital Converter (ADC)?	4marks
ii.	Draw a perfect labeled block diagram of a Digital Analog Converter (DAC)	5marks
iii.	A 5-bit DAC produces 0.5V for 00001, find V_{out} for 11010.	6marks

Question 4

i.	List 6 major subsystems of an oscilloscope	3marks
ii.	Sketch and label a cathode ray oscilloscope	6marks
iii.	Draw the circuit diagram of the differential amplifier type of electronic voltmeter and briefly explain its operation	6marks

Question 5

i.	What is ROM?	2marks
ii.	Using a 16 by 8-bit memory describe the memory operations step by step	6marks
iii.	Design a Mod 5 counter	7marks

Question 6

i.	What is the Mod number of a counter?	3marks
ii.	Describe a ring counter	6marks
i.	Draw a decade counter and tabulate its output with a negative transition clock	6marks