

NATIONAL OPEN UNIVERSITY OF NIGERIA
University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja
FACULTY OF SCIENCES
DEPARTMENT OF MATHEMATICS
2025_1 EXAMINATION

Course Code: MTH401

Course Title: GENERAL TOPOLOGY I

Credit Unit: 3

Time Allowed: 3 Hours

Total: 70 Marks

Instruction: Answer Question Number one and any Other Three(3) Questions

1a. Define the following:

i. Topological Space	2 marks
ii. Open cover of a Topological Space	2 marks
iii. Closed cover of a Topological Space	2 marks
iv. Homeomorphism of a function	2 marks
v. Compactness of a set	2 marks
b. Prove that a closed subset of a compact space is compact.	5 marks
c. Prove that homeomorphism preserves compactness.	8 marks
d. Is the space Q of rational numbers complete?	2marks

2a. Define the following:

i. A proper function.	2marks
ii. Bolzano-Weierstrass Theorem.	2marks
iii. What does it mean for a space to be metrizable?	2marks
b. Prove that a space is connected if and only if the only clopen sets are the empty set and the entire space.	4marks

c. Prove the Bolzano-Weierstrass Theorem. 5marks

3a. What is a neighborhood of a point in a topological space?

3marks

b. Define what it means for a topological space to be path-connected.

4marks

c. State and prove the Tychonoff Theorem.

8marks

4a. Define the following:

i. Heine-Borel theorem	2marks
ii. A continuous function between two topological spaces.	2marks
b. Prove Heine-Borel theorem.	7marks
c. Prove that the continuous image of a connected space is connected.	4marks

5ai. State Baire Category Theorem. 2marks

ii. Prove that the composition of two continuous functions is continuous. 4marks

b. Given a set X and a basis \mathcal{B} for a topology on X , prove that the topology generated by \mathcal{B} is unique.

3marks

c. State and prove Urysohn's Lemma. 6marks

6a. Every subsequence of a convergent sequence converges, and it converges to the same limit as does the mother sequence. (5 marks)

b. Let (E_1, d_1) and (E_2, d_2) be two metric spaces and let $E = E_1 \times E_2$ denote their cartesian product, where E is endowed with its own metric. Define Euclidean metric on $E_1 \times E_2$. (10 marks)