

NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikiwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES

DEPARTMENT OF MATHEMATICS

2025_1 EXAMINATION...

Course Code: MTH341

Course Title: Real Analysis

Credit Unit: 3

Time Allowed: 3 Hours

Total: 70 Marks

Instruction: Answer Question One (1) and Any Other 3 Questions

1a. Prove that a function f defined on an interval I , is derivable at a point c implies that it is continuous at the point c . (8 marks)

b. State Rolle's Theorem. (4 marks)

c. State the General Mean Value theorem. (5 marks)

d. Find the Maclaurin's series expansion of (i) $\cos x$ (ii) e^x (8 marks)

2a. Determine the values for all a and b for which $\lim_{x \rightarrow 0} \frac{[x(a - \cos x) + b \sin x]}{x^3}$ exists and is equal to $\frac{1}{6}$. (7 marks)

b. When is a function said to be differentiable at a point? (8 marks)

3a. Evaluate $\lim_{x \rightarrow 4} \frac{1}{\log(x-3)} - \frac{1}{x-4}$ (7 marks)

b. State without prove, the inverse function theorem. **(8 marks)**

4a. Evaluate $\lim_{x \rightarrow 0^+} \frac{\log \tan 2x}{\log \tan x}$ (7 marks)

bi. Deduce Lagrange's mean value theorem from the generalized mean value theorem **(4 marks)**

bii. Deduce Cauchy's mean value theorem from the generalised mean value theorem $f(z) = \frac{1}{z}$ (4 marks)

5ai. State without prove Taylor's infinite series expansion of $f(x)$. (3 marks)

aii) State without prove Maclaurin's infinite series expansion of $f(x)$. (4 marks)

5b. Verify Rolle's Theorem for the function f , defined by

i. $f(x) = x^3 - 6x^2 + 11x - 6$ for all $x \in [1,3]$ (4 marks)

ii. $f(x) = (x - a)^m (x - b)^n$ for all $x \in [a, b]$, $m, n \in \mathbb{N}$ (4 marks)

6a. Verify the hypothesis and conclusion of Lagrange's Mean Value theorem for the function $f(x) = \frac{1}{x}$ for all $x \in [1,4]$. (7 marks)

b. Given that f is a one-one continuous function on an open interval I and $J = f(I)$. If f is differentiable at $x_0 \in I$ and if $f'(x_0) \neq 0$, show that f^{-1} is differentiable at $y_0 = f'(x_0) \in J$ and $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$. (8 marks)