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1a. Prove that a function   defined on an interval  , is derivable at a point   implies that it is 

continuous at the point  .       (8 marks) 

b. State Rolle’s Theorem.        (4 marks) 
c.  State the General Mean Value theorem.      (5 marks)   

d.  Find the Maclaurin’s series expansion of (i)       (ii)     (8 marks) 

 

2a.  Determine the values for all   and   for which    
   

  (       )        

   exists and is equal to 
 

 
. 

           (7 marks) 

b. When is a function said to be differentiable at a point?     (8 marks) 

 

3a.  Evaluate       
 

    (   )
 

 

   
        (7 marks) 

 b. State without prove, the inverse function theorem. (8 marks) 
 

4a. Evaluate    
    

        

       
         (7 marks) 

bi. Deduce Lagrange’s mean value theorem from the generalized mean value theorem(4 marks)                                                                                                   

bii.Deduce Cauchy’s mean value theorem from the generalised mean value theorem  ( )  
 

 
                                                                                         

(4 marks)                                                                                                   
 

5ai. State without prove Taylor’s infinite series expansion of  ( )     (3 marks) 

aii)State without prove Maclaurin’s infinite series expansion of  ( )   (4marks) 

 

5b. Verify Rolle’s Theorem for the function  , defined by  

 i.  ( )               for all             (4 marks) 

 

 ii.  ( )  (   ) (   )  for all        , m,n     (4 marks) 
 

6a. Verify the hypothesis and conclusion of Lagrange’s Mean Value theorem for the function 

 ( )  
 

 
 for all        .      (7 marks) 

b. Given that   is a one-one continuous function on an open interval   and    ( ). If   is 

differentiable at      and if   (  )   , show that     is differentiable at      (  )    

and (   ) (  )  
 

  (  )
.        (8 marks) 
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