

NATIONAL OPEN UNIVERSITY OF NIGERIA
PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI-ABUJA
FACULTY OF COMPUTING
DEPARTMENT OF COMPUTER SCIENCE
2025_1 EXAMINATION

COURSE CODE: CIT371

COURSE TITLE: Introduction to Computer Graphics and Animation

COURSE CREDIT: 3 Units

TIME ALLOWED: $2\frac{1}{2}$ Hours

INSTRUCTION: Answer Question One (1) and any other Three (3)

Question 1

1a. Describe the following concepts used in traditional animation. **(6 Marks)**

- i. Key frames
- ii. Cell animation
- iii. Kinematics

1b. User Driven Animation and Procedural Animation are types of animation techniques. Give two (2) examples of each. **(2 Marks)**

1ci. Highlight five (5) important 3D transformations. **(5 Marks)**

1cii. Explain this statement: 'Modelling and animation are loosely coupled' **(2 Marks)**

1d. Discuss Ray tracing. **(5 Marks)**

1e. Highlight three (3) uses of Binary Space Partition (BSP) trees. **(3 marks)**

Question 2

2a. Explain the following terms; **(6 Marks)**

- i) Spectroradiometer
- ii) Complementary colours
- iii) Dominant wavelength.

2b. A quadtree is a tree data structure used to represent a 2D space partitioned into smaller squares (quadrants). Provide a formal definition of a Quadtree for a set of points P in a square $Q = [x_1Q, x_2Q] \times [y_1Q, y_2Q]$. **(6 Marks)**

2c. An alternative to the bounding box or bounding sphere hierarchy is to use splitting planes to divide space. Quadtrees/Octrees, KD trees, and BSP trees are all splitting plane algorithms. Describe the main differences among these approaches. **(3 Marks)**

Question 3

3a. With the aid of diagrams describe vector addition and vector subtraction for a pair of 2D vectors $a = [u, v]^T$ and $b = [s, t]^T$. **(8 Marks)**

3b. Prove that $a \circ b = |a||b|\cos\theta$ using the Law of Cosines. **(7 Marks)**

Question 4

4a. Given two matrices $a = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ and $b = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$, write down the Matrix Multiplication operation $C = AB$. **(2 Marks)**

4b. Write down three (3) properties of Matrix Multiplication. **(3 Marks)**

4c. The quality of a curve is characterized by the continuity at points where the piecewise polynomial curves are joined together. **(8 marks)**

- i. Define C^0 and G^0 continuity
- ii. Define G^1 continuity
- iii. Define C^1 continuity
- iv. Define C^N continuity

4d. Describe the components of a two-part Texture Mapping. **(2 Marks)**

Question 5

5a. Briefly describe five (5) Pixel Operations used in graphics processing. **(10 Marks)**

5b. The rendering pipeline for 3D Camera Transforms mimics photography. Explain the following transforms; **(3 Marks)**

- i. The Viewing transform
- ii. Model transform
- iii. Projection transform

5c. State any two (2) constraints for Bezier curves. **(2 Marks)**

Question 6

6a. Describe two (2) common frame buffer formats. **(7 Marks)**

6b. What are Spline Curves? **(1 Mark)**

6c. Derive an equation for the Intersection between a Ray and a Sphere. **(7 Marks)**

For the following conditions,

- i. The Ray is specified by the parametric expression $E + tv = E + tv$
- ii. The Sphere is centred at (x_c, y_c, z_c) and can be specified by the implicit equation $(x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2 - R^2 = 0$