

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2024_2 EXAMINATION_

Course Code: MTH412 Credit Unit: 3 Total: 70 Marks Instruction: Answer Question One (1) and A		: 3 arks	Course Title: FUNCTIONAL ANALYSIS II Time Allowed: 3 Hours ny Other 3 Questions	
1.(a)		n that $\{T_n\}$ is a sequence of bour erge strongly to $T \in B(X, Y)$?	nded linear operator in $B(X,Y)$. W	hen is T_n said to (4marks)
(b)	If $X^* \in \mathbb{R}^n$ and $r > 0$, prove that the ball $B(X^*, r) = \{y \in \mathbb{R}^n : k \ y - x * k < r\}$ centered at			r} centered at
	X^* of	f radius r is a convex set.		(11marks)
(c)	Let 1	$1 \le p \le \infty$, and p' the exponent due	al of p . Then, for all $x, y \in K^N$, pro-	ove that
$\sum_{i=1}^{N} x_i y_i \le x _p y _{p'}.$ (7marks) 2.(a) Let $M: X \to Y$. Explain an isometry of normed spaces X and Y, using its definition,				
	trans	lations and linear map.		(5marks)
(b) Let X and Y be normed linear spaces and let $T: X \to Y$ be a linear map. Prove that the				
following are equivalent:				
	i.	T is continuous at the origin 0 (in	In that sense that if $\{x_n\}$ is a sequence	e in X such that
		$x_n \to 0$ as $n \to 0$, then $TX_n \to 0$	in Y as $n \to \infty$);	
	ii.	T is Lipschitz. i.e. there exists a c	constant $K \ge 0$ such that, for each x	$\in X$,
		$ Tx \le K x .$		(11marks)

3.(a) Given that x and v are vectors in \mathbb{R}^n . When is the line L through x said to be a convex set?

	()
(b) State and Prove Minkowski's Inequality.	(13marks)

(3marks)

4.(a) When is the family of bounded linear map B(X, Y) said to be a vector space? (6marks)

(b) Given that *E* is a vector space of *K*, when is a function $(.|.): E \times E \to K$ said to be an inner product space and what makes it a Hilbert space? (10marks)

5(a) Given that (X, ρ) is a metric space, when is open cover compactness defined on X? (5marks)

(b) Prove that the set $M := \{(2\pi)^{-1/2}e^{inx} : n \in Z\}$ forms an orthonormal system in $L_2((-\pi,\pi), C)$. (11marks)