NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2024_2 EXAMINATION_

Course Code: MTH411Course Title: Measure Theory and IntegrationCredit Unit: 3Time Allowed: 3 HoursInstruction: Attempt Number One (1) and Any Other Four (4) Questions

1. (a)	Define equivalent functions	(3 marks)
(b)	Define the least upper bound of the measures of all closed sets.	(3 marks)
(c)	Suppose a bounded set E is the union of a denumerable number of pairwise disjoint sets E_k .	
	Show that $M^*(E) \leq \sum_k M^*(E_k)$	(6 marks)
(d)	Distinguish between a measurable function and a Borel function using four e	xamples.
	(1	0 marks)
2. (a)	Prove that if E is any countable set of real numbers, then $\mu^*(E) = 0$ (6)	ómarks)
(b)	Prove that if two subsets A and B of the real line are measurable, then so is A	$A \cap B$ (6marks)
3. (a)	Explain vividly what is meant by the Lebesgue Outer Measure $\mu^*(E)$ of a su	bset E of the real
	line R (6marks)
(b)	Prove that for any two subsets A and B of R , if A \subset B, then $\mu^*(A) \leq \mu^*(B)$	(6 marks)
4. Explain the properties that hold almost everywhere in a measure space(X, \mathcal{M} , μ). (12 marks)		
5. (a)	State (i) Dominated Convergence theorem	(4 marks)
	(ii) Monotone Convergence theorem.	(3 marks)
(b) Let (X, \mathcal{M}, μ) be a measure space, and let f and g be extended real-valued functions on X that		
are equal almost everywhere. If μ is complete and if f is measurable, explain what is meant by g is		
measurable. (5 marks)		
6. (a)	Let A and B be bounded sets such that $A \subseteq B$. Show that $M^*(A) \leq M^*(B)$	(6marks)
(b) Let $F = [a, b]$.Prove that F is a non – negative bounded closed set	(6 marks)