

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2024_2 EXAMINATION_

Course Code: MTH402Course Title: GENERAL TOPOLOGY IICredit Unit: 3Time Allowed: 3 HoursTotal: 70 MarksInstruction: Answer Question One (1) and Any Other 3 Questions

1. (a) Explain each of the following topological terms:

(i)	$\tau_4 - space$	(3marks)
(ii)	Continuous function	(3marks)
(iii)	Nowhere dense set	(2marks)
(iv)	Baire Space	(2marks)

(b) Let X and Y be topological spaces, let $f: X \to Y$. Then show that the following are equivalent:

(i) f is continuous.

(ii) For every subset A of X, one has $f(\overline{A}) \subset \overline{f(A)}$.

(iii) For every closed set B of Y, the set $f^{-1}(B)$ is closed in X.

(iv) For each $x \in X$ and each neighbourhood V of f(x), there exists a neighbourhood U of x such that $f(U) \subset V$. (12marks)

2. (a) (i) Explain Equal Cardinality.

(ii) Prove that any second countable topological space *X* is separable. (5marks)

(b) Let (X, τ) be a topological space. If X is second countable, then show that X is first countable.

(9marks)

(2marks)

- 3. (a) Let X be a first countable topological space and A be a subset of X. Then prove with claim that if $x \in A$, there exists a sequence $\{x_n\}$ of A such that $x_n \to x$ as $n \to \infty$. (8marks)
 - (b) If the topology on the range Y is given by a basis \mathcal{B} , then *show* that f is continuous if and only if for any basis element $B \in \mathcal{B}$, the set $f^{-1}(B)$ is open in X. (8marks)
- 4. (a) Let X be a compact space and let $\{C_n, n \ge 1\}$ be a collection of nonempty closed sets such that $C_{n+1} \subset C_n$. Then show that $\bigcap_{n\ge 1} C_i = \emptyset$. (6marks)
 - (b) If $f: X \to Y$ is continuous, and if A is a subspace of X, then *show* that the restricted function $f|_A: A \to Y$ is continuous. (10marks)

- 5. (a) Prove that the real line \mathbb{R} endowed with the standard topology is not compact. (8marks)
 - (b) Let $h: \mathbb{R} \to \mathbb{R}$ be defined by

$$h(x) = \begin{cases} \frac{x}{2}, & \text{if } x \ge 0\\ x, & \text{if } x \le 0 \end{cases}$$

then show that h is continuous.

(8marks)