

## NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja

### **FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS** 2024\_2 EXAMINATION\_

**Course Code: MTH381** Course Title: Mathematical Methods III Credit Unit: 3 Time Allowed: 3 Hours Total: 70 Marks Instruction: Answer Question One (1) and Any Other Three (3) Questions

## **QUESTION ONE**

(a) (i) If u = xyz,  $v = x^2 + y^2 + z^2$ , w = x + y + z, find  $J = \frac{\partial(u, v, w)}{\partial(x, y, z)}$ 

(ii) Given the functions:  $u = x^2 + y^2$ , v = 2xy, determine the Jacobian. 8marks

(b) Define the Jacobian of a functions *u* and *v* hence find the Jacobian of  $u = x + \frac{y^2}{x}$  and

$$v = \frac{y^2}{x}$$
. 5marks  
(c) Find the Laplace transform of  $f''(t)$ . 5marks

(d) Let 
$$H(s) = \frac{1}{(S^2 + w^2)^2}$$
 find  $H(t)$ . **7marks**

### **QUESTION TWO**

(aDefine the dependence and independence of a function.

(b) If  $u(x) = \sin bx$  and  $v(x) = \cos bx$  determine whether the functions u(x) and v(x) are linearly dependent or independent. **6**marks

(c)Evaluate the integral  $\int_{0}^{1} \int_{0}^{1} (x^2 + y^2) dy dx$ .

# **QUESTION THREE**

(a) Evaluate  $\oint \vec{f} \cdot \vec{dr}$  by Stoke's theorem where  $\vec{F} = (x^2 + y^2)\hat{i} - 2xy\hat{j}$  and c is the boundary of the rectangle  $x = \pm a$ , y = 0 and y = b. 5marks

(b) Find the Fourier series expansion of periodic function of period  $2\pi$ , defined by

6marks

**3marks** 

$$f(x) = \begin{cases} x & if \frac{-\pi}{2} < x < \frac{\pi}{2} \\ \pi - x & if \frac{\pi}{2} < x < \frac{3\pi}{2} \end{cases}$$
 6marks

(c) Evaluate 
$$\int_{0}^{2} \int_{0}^{\sqrt{2x-x^2}} \frac{x}{\sqrt{x^2+y^2}} dy dx$$
 by changing to polar coordinate. 4marks

### **QUESTION FOUR**

(a)Find the volume cut off from the paraboloid x<sup>2</sup> + y<sup>2</sup>/4 + z = 1by the planez = 0. 6marks
(b) Using Stoke's theorem or otherwise, evaluate ∫<sub>c</sub>[(2x - y)dx - yz<sup>2</sup>dy - y<sup>2</sup>zdz] where c is the circle x<sup>2</sup> + y<sup>2</sup> = 1 corresponding to the surface of sphere of what unit radius. 4marks
(c) Using the divergence theorem show that ∬<sub>s</sub>∇(x<sup>2</sup> + y<sup>2</sup> + z<sup>2</sup>)ds = 6v where s is closed surface enclosing volume V. 5marks

#### **QUESTION FIVE**

(a) State Green's and Stoke's theorems without proof. 4marks

(b) The vector field  $\overline{F} = x^2 \hat{i} + z \hat{j} + yzx$  is defined over the volume of the volume of the cuboid given by  $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$ , enclosing the surface. Evaluate the integral surface  $\iint_{C} \vec{F} \cdot ds$ . **7marks** 

(c) Evaluate  $\iiint \frac{dxdydz}{x^2 + y^2 + z^2}$  throughout the volume of the sphere  $x^2 + y^2 + z^2 = a^2$  4marks