

PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI-ABUJA FACULTY OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE B. SC. COMPUTER SCIENCE PROGRAMME 2024_2 EXAMINATION_

COURSE CODE: CIT 315 COURSE TITLE: OPERATING SYSTEMS
COURSE UNIT: 3 TIME: 2 HOURS 45 MINUTES

INSTRUCTION(S): ANSWER QUESTION ONE (1) AND ANY OTHER THREE (3) QUESTIONS

Question One

(a) Consider a logical address space of eight pages of 1024 words, each mapped onto a physical memory of 32 frames.

i. How many bits are in the logical address? [5 Marks]ii. How many bits are in the physical address? [5 Marks]

(b) Define race condition in the context of concurrent programming and explain how it can occur. [6 Marks]

(c) Describe the steps involved in creating a thread using pthreads. [5 Marks]

(d) Compare and contrast the operation of cache for read and write operations. [4 Marks]

Question Two

(a) i. Define a thread.	[3 Marks]
ii. Differentiate between a thread and a process.	[4 Marks]
(b) What is the purpose of multithreading in operating systems?	[3 Marks]
(c) Explain the concept of POSIX threads (pthreads) and their usage.	[5 Marks]

Question Three

- (a) In the context of an airline reservation system using a centralized database, discuss whether it is preferable to use threads or processes. **[6 Marks]**
- (b) Describe the concept of data access synchronization and its significance in preventing race conditions. [4 Marks]
- (c) Explain the concept of critical regions and how they help to achieve mutual exclusion.

[5 Marks]

Ouestion Four

(a) Define deadlock and explain why it occurs in process synchronization and resource sharing.

[5 Marks]

(b) Describe the deadlock detection approach and algorithm.	[5 Marks]
(c) Discuss the concept of safe state and its relationship to deadlock avoidance.	[5 Marks]
Question Five	
(a) Explain the concept of virtual memory and its components.	[4 Marks]
(b) i. What is paging and how does it work?	[3 Marks]
ii. How does the size of a page or segment affect memory management?	[3 Marks]
(c) What are the two main places to implement threads? Explain briefly.	[5 Marks]

Question Six

- (a) Explain the concept of thread states and their significance in thread management. [5 Marks]
- (b) Discuss the properties that a critical section implementation must satisfy. [4 Marks]
- (c) Name three ways to switch between user mode and kernel mode in a general-purpose operating system. [6 Marks]