

NATIONAL OPEN UNIVERSITY OF NIGERIA UNIVERSITY VILLAGE, PLOT 91 CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESS WAY, JABI - ABUJA. FACULTY OF SCIENCES DEPARTMENT OF CHEMISTRY 2024_2 EXAMINATION

COURSE CODE:CHM 301COURSE TITLE:PHYSICAL CHEMISTRY IIICOURSE UNIT:2TIME:2 HOURSINSTRUCTION:Answer question one and any other two questions.

Question 1

(a)Calculate the molecular mass of 9.21g non-volatile organic compound, dissolved in 50g of pure water at 25° C, which depresses the vapour pressure of the water from 3.16 x 10^3 to 3.10 x 10^3 Nm⁻².

(b) Define the term enthalpy of fusion

(c) What is the physical significance of decrease in Gibbs free energy?

(d)Calculate the entropy of mixing of 1.00 mol of H_2 with 2.00 mol of O_2 assuming that no chemical reaction occurs.

(e) Mention five(5) features of Carnot cycle

(f) Calculate the final pressure of a sample of water vapour that expands reversibly and adiabatically from 8.73 Torr and 500 cm³ to a final volume of 3.0 dm³. Take $\gamma = 1.3$.

Question 2:

(a)Explain the depression of freezing point as an example of colligative properties

(b) What do you understand by the term enthalpy of fusion

(c) Given that the fugacity coefficient of a certain gas at 290 K and 2.1 MPa is 0.68. Calculate the difference of its molar Gibbs energy from that of a perfect gas in the same state. (

(d) Discuss thermodynamic reversible process

QUESTION 3

(a) The free energy change ΔG for a particular process is -121.00 kJ mol⁻¹ at 298 K

and -117.00 kJ mol⁻¹ at 308 K. Calculate the enthalpy change for the process at 303 K.

- (b) Write equation to show the net work done in all the four (4) stages of the Carnot cycle
- (c) What do you understand by the term heat of neutralization

Question 4

(a)Given a 1.00 mol of a monoatomic gas initially at $3.00 \times 10^2 K$ and occupying $2.00 \times 10^{-3} m^3$ is heated to $3.25 \times 10^2 K$ and the final volume is $4.00 \times 10^{-3} m^3$. Assuming ideal behaviour, calculate the entropy change for the process.

(b) Given 15 gram molecules of H_2 on interaction with 5.2gram molecules of iodine vapours at 444^oC, produce 10 gram molecules of H1 . calculate the equilibrium constant of the reaction.

(c) Distinguish between heat of reaction and heat of formation

Question 5

- (a) Given a 1.00 mol of an ideal gas is compressed isothermally and reversibly from 1.00×10^{-2} m³ to 1.00×10^{-3} m³. Calculate the entropy change.
- (b) Derive an equation to show the change in entropy accompanying heating process
- (c) Mention four (4) applications of Hess's law in physical chemistry