

NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja FACULTY OF SCIENCES

DEPARTMENT OF MATHEMATICS 2024 1 EXAMINATION_

Course Code: MTH312	Course Title: Abstract Algebra
Credit Unit: 3	Time Allowed: 3 Hours
Total: 70 Marks	11 1 0 000 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Instruction: Answer Question One (1) and Any O	ther 3 Questions
Q1(a) (i) Establish that if f is an ideal of a ring R , th	en there exists a ring homomorphism
$f: R \to \frac{R}{I}$ whose Kernel is 1.	(9 marks)
(ii) Let $R = Z_8$, Show that $I = \{\overline{0}, \overline{4}, \}$ is an ide	eal of R. (5 marks)
Hence construct the Cayley table for $+$ in $\frac{R}{I}$.	(5 marks)
(b) Define each of the following:	0/5 2 5.17
(i) an even permutation $f \in S_n$.	(3 marks)
(ii) an odd permutation $f \in S_n$.	(3 marks)
Q2 (a) Define each of the following: (i) an isomorph	sism f. (2 marks)
(ii) the signature of $f \in S_n (n \ge 2)$.	(2 marks)
(b) Suppose $f = (1,2,3) \in S_3$. Find Sign of f .	(4 marks)
(c) If $H riangleq G$, $K riangleq G$. Establish that $HK riangleq G$.	(7 marks)
Q3 (a) Define disjoint cycles and write an example of	of each of two cycles that is (i) disjoint (ii)
not disjoint in S_4 .	(6 marks)
(b) Prove that the set A_n of even permutations in	S_n , forms a normal subgroup of S_n of order
$\frac{n!}{2}$.	(9 marks)
Q4 (a) Given the Klein 4 – group K_4 . Show that bot	h its subgroup (a) and (b) are normal.
Q4 (a) Given the Riem 4 - group 14. Show that see	(9 mark)
(b) Prove that every subgroup of Z is normal in	Z. (6 marks)
Q5 (a) Establish that the subgroup $((12))$ of S_3 is n	ot normal. (6 marks)
(b) Let H be a subgroup of a group G and	
(i) $g^{-1}Hg \subseteq H \forall g \in G$	
(ii) $g^{-1}Hg = H \forall g \in G$	

Show that (i) and (ii).

(9marks)

le				
Medium	Thick coaxial cable		Twisted pair	
Maximum length				
Topology				
Advantages		Low cost	Existing environment can use Hub and connect the stations	

- 6(a) State and define the 6 parameters used by Digital Signature Algorithm
 [9 marks]
- (b) Justify your recommendation of Elliptic Curve Cryptography (ECC) to Rivest, Shamir Adi (RSA) to a client [6 marks]