

NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS

2024 1 EXAMINATION

Course Code: MTH 301

Course Title: Functional Analysis

Credit Unit: 3

Time Allowed: 3 Hours

Total: 70 Marks

Instruction: Answer Question One (1) and Any Other 3 Questions

Q1 (a)	Define each	of the	follo	wing
--------	-------------	--------	-------	------

(i) a complete metric space (X, d).

(3marks)

(ii) a complete subset.

(3marks)

(b) Given the space R with the usual metric. Establish that it is complete.

(12 marks)

(c) Show that if $\{A_i\}_{i\in I}$ is a family of connected subsets of X such that $\bigcap_{i\in I} A_i \neq \emptyset$, then $A = \bigcup_{i\in I} A_i$ is connected. (7 marks)

O2 (a) (i) What is a topological space (X, τ) ?

(4 marks)

- ii) Using the axiom of addition. Show that the system $(R, +, \cdot)$ is an ordered field. (5marks)
- (b) Differentiate between open set and closed set.

(6marks)

Q3 (a) Define each of the following:

(i) a separation

(3marks)

(ii) a connected subset Y of X.

(3marks)

(4marks)

- (b) Show that if $\{A_i\}_{i\in I}$ is a family of connected subsets of X such that $\bigcap_{i\in I}A_i\neq\emptyset$, then $A=\bigcup_{i\in I}A_i$ is connected. (5 marks)
- (c) Differentiate between connected and disconnected topological spaces.

Q4 (a) Define each of the following:

i) a continuous function f at the point x_0 .

(4 marks)

ii) a continuous function f.

(3marks)

(b) Show that if $f: X \to Y$ be a function from a metric space (X, d) to another metric (Y, ρ) and let $x_0 \in X$. Then f is continuous at x_0 if for every sequence $\{x_n\}$ such that $x_n \to x$, $f(x_n) \to f(x_0)$. (8 marks)