FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2023 2 EXAMINATIONS_

MTH 312 Course Code:

Group and Rings Course Title:

Credit Unit:

Time Allowed: 3 Hours 70 Marks

Total: Answer Question Number One and Any Other Four Questions Instruction:

 Let G be a group An isomorphism φ: G → G is called an automorphism of G and the set of all automorphisms of G is denoted by Aut(G).

(4 marks) (a) Show that Aut(G) is a group under composition of functions

- (b) Let $a \in G$ be fixed. Define the map $\theta_a : G \to G$ by $\theta_a(x) = ax^{a-1}$ for all $x \in G$. (4 marks) Show that $\theta_{\alpha} \in Aut(G)$.
- (c) Let Inn(G) be the set of all inner automorphisms of G. Show that Inn(G) is a (4 marks) normal subgroup of Aut(G).
- (d) For $x, y \in G$, we say that y is conjugate to x, if $\exists a \in G$ such that $y = \theta_a(x)$.

(4 marks) Show that \sim is an equivalence relation on G

Let H < G. Show that set $\theta_a(x)|x \in H$ is a subgroup of G. (3 marks) ii.

(3 marks) (e) Show that (nZ, +, .) is a ring where $n \in Z$.

- 2. (a) Obtain the subgroup of S_4 , to which Z_4 is isomorphic. Is $Z_4 = A_4$? (6 marks) (b) Let $f: X \to Y$ and $g: Y \to Z$ between mappings such that $g \circ f$ is injective. Show that f(6 marks) must be injective but g need not be injective.
- 3. (a) Find the reminder when $a(x) = x^6 + 3x^6 3x + 2$ is divided by $b(x) = 3x^2 + 2x 3$

(b) Find the $g \cdot c \cdot d$ of $a(x) = x^6 + 3x^6 - 3x + 2$ and $b(x) = 3x^2 + 2x - 3$ in $Z_7(x)$ (6 marks)

- 4. (a) Find the polynomials r(x) and s(x) such that $d(x) = a(x) \cdot r(x) + b(x) \cdot s(x)$ (6 marks)
 - (b) Show that the functions $f(x) = x^2$ and $g(x) = x^3$ commute with each other under (6 marks) composition.
- 5. (a) Show that a group G order 255 (3 \times 5 \times 17) has either 1 or 51 Sylow 5 subgroups (6 marks)

(b) How many Sylow 3-subgroups can it have? (6 marks)

6. Consider the set $M_2(R) = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \middle| a_{11}, a_{12}, a_{21}, a_{22} \in \mathbb{R} \right\}$. Show that $M_2(R)$ is a ring with respect to addition and multiplication of matrices. (12 marks)