
 

 

 

               CIT: 432 SOFTWARE ENGINEERING II 

 

 
 

 
 

 

 

 

 



CIT432 COURSE GUIDE 
 
 

 

 

 

 

 

 
 

 
 

           NATIONAL OPEN UNIVERSITY OF NIGERIA 
 

 

                                     FACULTY OF SCIENCE 
 

 

COURSE CODE: CIT432 

 

COURSE TITLE: SOFTWARE ENGINEERING II 



 

 

 

 

 

 
 

 

CIT432 

SOFTWARE ENGINEERING II 
 

Course Team  

 

Dr. B.C.E Mbam (Developer/Writer) - EBSU 

Dr. Juliana Ndunagu (Programme Leader/Coordinator) - NOUN 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NATIONAL OPEN UNIVERSITY OF NIGERIA 

 

National Open University of Nigeria  

Headquarters: 

14/16 Ahmadu Bello Way 

Victoria Island 

Lagos 

 

Abuja Office: 

No. 5 Dar es Salaam Street 

Off Aminu Kano Crescent 

Wuse II, Abuja 

COURSE 

GUIDE 



CIT432 COURSE GUIDE 

 
 

e-mail: centralinfo@nou.edu.ng 

URL: www.nou.edu.ng 
 

 

 

Published By: 

National Open University of Nigeria 

First Printed 2012 

ISBN: 978-058-335-1 

 

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/




CIT432 COURSE GUIDE 

4 

 

 

 

 

CONTENTS PAGE 

Introduction        1 

What You Will Learn in This Course    1 

Course Aim        1 
Course Objectives       1 

Working through This Course      3 

Course Materials       3 

Study Units        4 

Textbooks and References      4 

Assignment    File       6 

Presentation Schedule       6 
Assessment        6 

Tutor-Marked Assignments (TMAs)     7 

Final Examination and Grading     7 

Course Marking Scheme      7 

Course Overview       7 

How to Get the Most from This Course    8 

Facilitators/Tutors and Tutorials     10 



 

 

 

 

 

 

 

 

 

Introduction 
 

CIT432: Software Engineering II is a 2 -credit course available for 

students studying towards acquiring a Bachelor of Science in Computer 

Science and other related disciplines. 

 

The course is divided into four (4) modules and 14 study units. It entails 

a brief review of the fundamental concepts of software engineering. It 

further deals with the different stages involved in developing good, 

functional, reliable and maintainable software. The course also discusses 

software engineering models. Formal methods of software development 

are also treated. It covers software management methodologies and 

techniques. 

 

What You Will Learn in This Course 
 

The overall aim of this course is to teach you the various models of 

software development. Program testing, software management 

methodologies, management techniques and formal methods are also 

treated. In this course, you will be equipped with the basic and advance 

means of developing good, functional, reliable and maintainable 

software. You will also learn about program testing. Finally, you will 

learn how to develop reliable software in teams and by using the best 

available models. 

 

Course Aim 
 

This course aims to take a step further in teaching you the basic and best 

approach to software development. It is hoped that the knowledge would 

enhance both the software development expertise and your ability to 

manage developed software. 

 

Course Objectives 
 

It is important to note that each unit has specific objectives. Students 

should study them carefully before proceeding to subsequent units. 

Therefore, it may be useful to refer to these objectives in the course of 

your study of the unit to assess your progress. You should always look 

at the unit objectives after completing a unit. In this way, you can be 

sure that you have done what is required of you by the end of the unit. 

 

However, below are the overall objectives of this course: 

 

 What a computer software is 

 Different types of computer software 

 What engineering is all about 



CIT432 SOFTWARE ENGINEERING II 

2 

 

 

 

 

 How engineering principles are applied to software development 

 When a software is said to be well engineered. 

 Why it is necessary for you to study software engineering. 

 The software generations 

 The basic features of each generations 

 Differences between software and hardware 

 Basic characteristics of software 

 Explanation with clear examples of system software 

 The different application software and where they are being used. 

 The knowledge of operating system 

 Explanation of programming languages 

 The relationship between system software and other software 

 The differences between the low level languages and the high 

level languages 

 Definition and explanation of software development model 

 The understanding of the background/origin of software 

development model 

 Brief discussion of the classes of software model 

 The different types of software engineering model. 

 The importance of these models in software development 

 The waterfall model of software life cycle 

 Phases involved in waterfall model 

 Advantages and disadvantages of the waterfall model 

 The build-and-fix model 

 Advantages and disadvantages of the build-and-fix model 

 The appropriate use of build-and-fix model 

 Description of the rapid prototype model 

 Basic features of the rapid prototyping model 

 Use of the rapid prototyping model 

 The spiral model and all the phases involved in it. 

 Appropriate use of spiral model 

 Advantages and disadvantages of the spiral model 

 Explanation of SDLC 

 Identification of all the stages involved in software development: 

planning, construction and maintenance. 

 Basic factors that must be considered in software development 

 The importance of having a standard in software development 

 The importance of software testing 

 Explanation of program code 

 Identification of good code 

 The qualities of good code 

 The different Program Control Structures 

 Modularity in programming 

 Software Testing 



CIT432 SOFTWARE ENGINEERING II 

3 

 

 

 

 

 Software errors 

 Software Testing methods 

 Meaning of formal methods 

 Some examples of formal method 

 Reasons for learning formal method 

 Classification of formal methods 

 Uses of formal methods 

 Caution in the use of formal method 

 Limitations of formal methods. 

 Explanation of project management 

 Project management tools 

 Project management process 

 Project management methodologies 

 Software Project management techniques 

 

Working through This Course 
 

To complete this course, you are required to study all the units, the 

recommended text books, and other relevant materials. Each unit 

contains some self-assessment exercises and tutor - marked assignments, 

and at some point, in this course, you are required to submit the tutor 

marked assignments. There is also a final examination at the end of this 

course. Stated below are the components of this course and what you 

have to do. 

 

Course Materials 
 

The major components of the course are: 

 

1. Course Guide 

2. Study Units 

3. Text Books 

4. Assignment File 

5. Presentation Schedule 

 

Study Units 
 

There are 4 modules and 12 study units in this course. They are: 

 

Module 1     Software Engineering Fundamentals 

 

Unit 1 Introduction 
Unit 2 Software Evolution and Software Characteristics 

Unit 3 Classifications of Computer Software 



CIT432 SOFTWARE ENGINEERING II 

4 

 

 

 

 

Module 2 Software Engineering Models 
 

Unit 1 Overview of Software Development Models 
Unit 2 The Waterfall Model and The Build-And-Fix Model 

Unit 3 The Rapid Prototyping Model and The Spiral Model 

 

Module 3 Software Development Life Cycle (SDLC) 
 

Unit 1 Overview of the Process Involved 

Unit 2 Systems Analysis and Software Requirement Specification 

Unit 3 Software Coding 

 

Module 4 Formal Methods 
 

Unit 1 Overview of Formal Methods 

Unit 2 Overview of some Formal Methods 

Unit 3 Software Project Management 

 

Textbooks and References 
 

These texts will be of enormous benefit to you in learning this course: 

Adelard, R., M. & Peter Froome. Mural and Specbox. In VDM'91 

Bjørner, Dines; Cliff, B. Jones (1978). The Vienna Development 

Method: The Meta-Language, Lecture Notes in  Computer 

Science 61. Berlin, Heidelberg, New York: Springer. 

 

Boehm, B. W. (2001). Software Engineering Economic. Englewood 

Cliffs, New Jersey: Prentice-Hall. 

 

Boehm, B. (1987). A Spiral Model of Software Development and 

Enhancement, Computer, 20(9), 61- 72. 

 

Boehm, B. A.; Egyed, J.; Kwan, D.; Port, A.; Shah, & R. Madachy 

(1998). Using the WinWin Spiral Model: A Case Study, 

Computer, 31(7), 33-44. 

 

Chatters, B.W.; Lehman, M. M.; Ramil, J.F. & Werwick, P. (1987). 

Modeling a Software Evolution Process: A Long-Term Case 

Study, Software Process-Improvement and Practice, 5(2-3), 91- 

102, 2000. 4, 5, 19-25. 

Chatters, B.W.; Lehman, M.M.; Ramil, J. F. & Werwick, P. (1987). 

Modeling  a  Software  Evolution  Process:  A  Long-Term  Case 



CIT432 SOFTWARE ENGINEERING II 

5 

 

 

 

 

Study, Software Process-Improvement and Practice, 5(2-3), 91- 

102, 2000.4, 5, 19-25. 

 

Chatters, B.W.; Lehman, M.M.; Ramil, J.F. & Werwick, P. (2000). 

Modeling a Software Evolution Process: A Long-Term Case 

Study. Software Process-Improvement and Practice, 5(2-3), 91- 

102. 

 

Derek, A. & Darrel Ince (2001). Practical Formal Methods. McGraw 

Hill Book Corporation. 

 

Fitzgerald, J.S & Larsen, P.G. (1998). Modelling Systems: Practical 

Tools and Techniques in Software Engineering. Cambridge: 

Cambridge University Press. 

 

Kaiser, G. & Feiler, P. (1988). Intelligent Assistance for Software 

Development and Maintenance. IEEE Software, pages 40-49, 

May. 

 

Hußmann, H. (1997). Formal Foundations for Software Engineering 

Methods, Volume 1322 of Lect. Notes Comp. Sci. Berlin: 

Springer. 

 

Bradac, M. et al. (1993). Prototyping a Process Monitoring Experiment. 

In Proceedings of the 15th International Conference on Software 

Engineering, page 155-165, May 

 

Mbam, B.C.E. (2002). Information Technology and Management 

Information System. Enugu: Our Saviours Press limited. 

 

Mili, A.; Desharnais, J. & Gagne, J.R. (1986). Formal Models of 

Stepwise Refinement of Programs, ACM Computing Surveys, 18, 

3, 231-276. 

 

Moore, J.W.; DeWeese, P.R. & Rilling, D. (1997). ―U. S. Software Life 

Cycle Process Standards,‖ Crosstalk: The DoD Journal of 

Software Engineering, 10:7, July. 

 

Sajan, M. (2007). Software Engineering. Ram Naga, New Delhi: S. 

Chand & Company Ltd, – 11Q Q55. 

 

Scacchi, W. & Mi; .P. (1997). ―Process Life Cycle Engineering: A 

Knowledge-Based Approach and Environment‖. Intelligent 

Systems in Accounting, Finance, and Management, 6(1):83-107. 



CIT432 SOFTWARE ENGINEERING II 

6 

 

 

 

 

Scacchi, W. ―Understanding Software Process Redesign using 

Modeling, Analysis and Simulation‖. Software Process -- 

Improvement and Practice 5(2/3):183-195, 2000. 

 

Basili, V. and Weiss, D. A (1984). Methodology for Collecting Valid 

Software Engineering Data. IEEE/ACM Transactions on 

Software Engineering, SE-10(6): 728-738, November 

 

Wood, M. & Sommerville, I. (1988). A Knowledge-Based Software 

Components Catalogue, Software Engineering Environments, 

Ellis Horwood, P. Brererton (ed.), Chichester, England, 116-131. 

 

Yu, E.S.K. & Mylopoulos, J. (1994). Understanding ―Why‖ in Software 

Process Modelling, Analysis, and Design, Proc. 16th. Intern. 

Conf. Software Engineering, 159 -168, 

 

Assignment File 
 

The assignment file will be given to you in due course. In this file, you 

will find all the details of the work you must submit to your tutor for 

marking. The marks you obtain for these assignments will count towards 

the final mark for the course. Altogether, there are 12 tutor marked 

assignments for this course. 

 

Presentation Schedule 
 

The presentation schedule included in this course guide provides you 

with important dates for completion of each tutor marked assignment. 

You should therefore endeavor to meet the deadlines. 

 

Assessment 
 

There are two aspects to the assessment of this course. First, there are 

tutor marked assignments; and second,  the written examination. 

Therefore, you are expected to take note of the facts, information and 

problem solving gathered during the course. The tutor marked 

assignments must be submitted to your tutor for formal assessment, in 

accordance to the deadline given. The work submitted will count for 

40% of your total course mark. At the end of the course, you will need 

to sit for a final written examination. This examination will account for 

60% of your total score. 

 

Tutor -Marked Assignments (TMAs) 
 

There are 12 TMAs in this course. You need to submit all the TMAs. 

The best 4 will therefore be counted. When you have completed each 



CIT432 SOFTWARE ENGINEERING II 

7 

 

 

 

 

assignment, send them to your tutor as soon as possible and make 

certain that it gets to your tutor on or before the stipulated deadline. If 

for any reason you cannot complete your assignment on time, contact 

your tutor before the assignment is due to discuss the possibility of 

extension. Extension will not be granted after the deadline, unless on 

extraordinary cases. 

 

Final Examination and Grading 
 

The final examination for CIT423 will last for a period of 2 hours and 

have a value of 60% of the total course grade. The examination will 

consist of questions which reflect the self assessment exercise and tutor 

marked assignments that you have previously encountered. Furthermore, 

all areas of the course will be examined. It would be better to use the 

time between finishing the last unit and sitting for the examination, to 

revise the entire course. You might find it useful to review your TMAs 

and comment on them before the examination. The final examination 

covers information from all parts of the course. 

 

Course Marking Scheme 
 

The following table includes the course marking scheme 

 

Table 1:        Course Marking Scheme 
 

 

Assessment Marks 

Assignments 1-12 12 assignments, 40% for the best 4 Total = 

10% X 4 = 40% 

Final Examination 60% of overall course marks 

Total 100% of Course Marks 



CIT432 SOFTWARE ENGINEERING II 

8 

 

 

 

 

Course Overview 
 

This table indicates the units, the number of weeks required to complete 

them and the assignments. 

 

Table 2: Course Organiser 
 

 

Unit Title of the work Weeks 

Activity 

Assessment 

(End of Unit) 
 Course Guide Week 1  

Module 1 Software Engineering Fundamentals 

1 Introduction Week 1 Assessment 1 

2 Software  Evolution  and  Software 

Characteristics 

Week 2  

Assessment 2 

3 Classifications of Computer 

Software 

Week3  

Assessment 3 

Module 2 Software Engineering Models 

1 Overview of 

Development Models 

Software Week 4  

Assessment 4 

2 The Waterfall Model 

Build-and-Fix Model 

and The Week 5  

Assessment 5 

3 The Rapid Prototyping Model and 

The Spiral Model 

Week 6  

Assessment 6 

Module 3 Software Development Life Cycle (SDLC) 

1 Overview of The Process Involved Week 7 Assessment 7 

2 Systems Analysis and Software 

Requirement Specification 

Week 8  

Assessment 8 

3 Software Coding Week 9 Assessment 9 

Module 4 Formal Methods 

1 Overview of Formal Methods Week 10 Assessment 10 

2 Overview of some Formal Methods Week 11 Assessment 11 

3 Software Project Management Week 12 Assessment 12 
 

 

 

How to Get the Most Out of This Course 
 

In distance learning, the study units replace the university lecturer. This 

is one of the huge advantages of distance learning mode; you can read 

and work through specially designed study materials at your own pace 

and at a time and place that is most convenient. Think of it as reading 

from the teacher, the study guide indicates what you ought to study, how 

to study it and the relevant texts to consult. You are provided with 

exercises at appropriate points, just as a lecturer might give you an in- 

class exercise. 



CIT432 SOFTWARE ENGINEERING II 

9 

 

 

 

 

Each of the study units follows a common format. The first item is an 

introduction to the subject matter of the unit and how a particular unit is 

integrated with the other units and the course as a whole. Next to this is 

a set of learning objectives. These learning objectives are meant to guide 

your studies. The moment a unit is finished, you must go back and 

check whether you have achieved the objectives. If this is made a habit, 

then you will increase your chances of passing the course. The main 

body of the units also guides you through the required readings from 

other sources. This will usually be either from a set book or from other 

sources. Self assessment exercises are provided throughout the unit, to 

aid personal studies and answers are provided at the end of the unit. 

Working through these self tests will help you to achieve the objectives 

of the unit and also prepare you for tutor marked assignments and 

examinations. You should attempt each self test as you encounter them 

in the units. 

 

The following are practical strategies for working through this 

course: 
 

1. Read the course guide thoroughly 

2. Organise a study schedule. Refer to the course overview for more 

details. Note the time you are expected to spend on each unit and 

how the assignment relates to the units. Important details, e.g. 

details of your tutorials and the date of the first day of the 

semester are available.  You need to gather together all these 

information in one place such as a diary, a wall chart calendar or 

an organiser. Whatever method you choose, you should decide on 

and write in your own dates for working on each unit. 

3. Once you have created your own study schedule, do everything 

you can to stick to it. The major reason that students fail is that 

they get behind with their course works. If you get into 

difficulties with your schedule, please let your tutor know before 

it is too late for help. 

4. Turn to Unit 1 and read the introduction and the objectives for the 

unit. 

5. Assemble the study materials. Information about what you need 

for a unit is given in the table of contents at the beginning of 

each unit. You will almost always need both the study unit 

you are working on and one of the materials recommended 

for further readings, on your desk at the same time. 

6. Work through the unit, the content of the unit itself has been 

arranged to provide a sequence for you to follow. As you work 

through the unit, you will be encouraged to read from your set 

books. 

7. Keep in mind that you will learn a lot by doing all your 

assignments carefully. They have been designed to help you meet 



CIT432 SOFTWARE ENGINEERING II 

1
0 

 

 

 

 

the  objectives  of  the  course  and  will  help  you  pass  the 

examination. 

8. Review the objectives of each study unit to confirm that you have 

achieved them. If you are not certain about any of the objectives, 

review the study material and consult your tutor. 

9. When you are confident that you have achieved a unit‘s 

objectives, you can start on the next unit. Proceed unit by unit 

through the course and try to pace your study so that you can 

keep yourself on schedule. 

10. When you have submitted an assignment to your tutor for 

marking, do not wait for its return before starting on the next unit. 

Keep to your schedule. When the assignment is returned, pay 

particular attention to your tutor‘s comments, both on the tutor 

marked assignment form and also written on the assignment. 

Consult your tutor as soon as possible if you have any questions 

or problems. 

11. After completing the last unit, review the course and prepare 

yourself for the final examination. Check that you have achieved 

the unit objectives (listed at the beginning of each unit) and the 

course objectives (listed in this course guide). 

 

Facilitators/Tutors and Tutorials 
 

There are 8 hours of tutorial provided in support of this course. You will 

be notified of the dates, time and location together with the name and 

phone number of your tutor as soon as you are allocated a tutorial group. 

Your tutor will mark and comment on your assignments, keep a close 

watch on your progress and on any difficulties you might encounter and 

provide assistance to you during the course. You must mail your tutor 

marked assignment to your tutor well before the due date. At least two 

working days are required for this purpose. They will be marked by your 

tutor and returned to you as soon as possible. Do not hesitate to contact 

your tutor by telephone, e-mail or discussion board if you need help. 

The following might be circumstances in which you would find help 

necessary, contact your tutor if: 

 

 You do not understand any part of the study units or the assigned 

readings. 

 You have difficulty with the self test or exercise. 

 You have questions or problems with an assignment, with your 

tutor‘s comments on an assignment or with the grading of an 

assignment. 

 

You should endeavour to attend the tutorials. This is the only 

opportunity to have face-to-face contact with your tutor and ask 

questions which are answered instantly. You can raise any problem 



CIT432 SOFTWARE ENGINEERING II 

1
1 

 

 

 

 

encountered in the course of your study. To gain the maximum benefit 

from the course tutorials, have some questions handy before attending 

them. You will learn a lot from participating actively in discussions. 



CIT432 SOFTWARE ENGINEERING II 

12 

 

 

 

 

Course Code CIT432 

Course Title Software Engineering II 
 

 

 

 

 

 

 

 

 

 

 
Course Team Dr. B.C.E Mbam (Developer/Writer) - EBSU 

Dr. Juliana Ndunagu (Programme Leader/Coordinator) - NOUN 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NATIONAL OPEN UNIVERSITY OF NIGERIA 



CIT432 SOFTWARE ENGINEERING II 

xiii 

 

 

 

 

 

 

 

 

 

 

 

 

 

National Open University of Nigeria 

Headquarters 

14/16 Ahmadu Bello Way 

Victoria Island 

Lagos 

 

Abuja Office 

No. 5 Dar es Salaam Street 

Off Aminu Kano Crescent 

Wuse II, Abuja 

 

e-mail: centralinfo@nou.edu.ng 

URL: www.nou.edu.ng 
 

 

 

Published By: 

National Open University of Nigeria 

First Printed 2012 

ISBN: 978-058-335-1 

 

All Rights Reserved 

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/


CIT432 SOFTWARE ENGINEERING II 

14 

 

 

 

 

CONTENTS PAGE 
 

Module 1     Software Engineering Fundamentals……………….  1 
 

Unit 1 Introduction ………………………………………….. 1 

Unit 2 Software Evolution and Software Characteristics…… 7 

Unit 3 Classifications of Computer Software ……………….. 12 

 

Module 2     Software Engineering Models………………………. 20 

 

Unit 1 Overview of Software Development Models ……….. 20 

Unit 2 The Waterfall Model and The Build-and-Fix Model... 29 

Unit 3 The Rapid Prototyping Model and the Spiral Model...  38 

 

Module 3      Software Development Life Cycle (SDLC) ………. 47 

 

Unit 1 Overview of the Process Involved……………….…... 47 

Unit 2 Systems Analysis and Software Requirement 

Specification ……………………..…………………... 57 

Unit 3 Software Coding …………………………..………… 68 

 

Module 4     Formal Methods……………………………..……… 82 
 

Unit 1 Overview of Formal Methods………………….…… 82 

Unit 2 Overview of Some Formal Methods………….…….. 90 

Unit 3 Software Project Management ……………..……….   99 



CIT432 SOFTWARE ENGINEERING II 

1 

 

 

 

 

MODULE 1         SOFTWARE ENGINEERING 

FUNDAMENTALS 
 

Unit 1 Introduction 

Unit 2 Software Evolution and Software Characteristics 

Unit 3 Classifications of Computer Software 
 

 
UNIT 1       INTRODUCTION 

 

CONTENTS 

 

1.0     Introduction 

2.0     Objectives 

 Main Content 

 What is Computer Software? 

 Growing Importance of Software 

 What is Engineering? 

 What is Software Engineering? 

 What is Well Engineered Software? 

 Why Studying Software Engineering? 

4.0     Conclusion 

5.0     Summary 

6.0     Tutor-Marked Assignment 

7.0     References/Further Reading 

 

 INTRODUCTION 
 

The need for computer software is fast growing in our society today. 

Software controls generation and distribution of electricity, water 

purification and distribution, robotic systems in production plants, traffic 

flows, household equipment, aircraft, air traffic, etc. Software also 

plays an ever-increasing role in business management: it controls 

equipment maintenance management, logistics, resources  allocations 

etc. In view of this, it is imperative that all and sundry seek to 

understand what computer software is. In this unit, we shall explain 

clearly what computer software is? We shall also discuss the need to 

employ engineering principles in the development of good, functional, 

reliable and maintainable software. Finally, this unit highlights some 

reasons you should study software engineering. 



CIT432 SOFTWARE ENGINEERING II 

2 

 

 

 

 

2.0    OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 define computer software 

 differentiate between the types of computer software 

 define software engineering 

 apply engineering principles in software development 

 determine when a software is said to be well engineered 

 describe the essence of studying software engineering. 

 

 MAIN CONTENT 
 

 What is Computer Software? 
 

Software can be defined as aggregates of computer programs together 

with their appropriate documentation and set of data they need for real 

life computation/processing. Computer software drives the hardware 

(physical components) of the computer system. Computer software also 

enable computer users solve their day-to-day problem. 

 

According to Sajan (2003), software is not just a fancy name for 

programming. There are some clear distinctions between the two which 

could be given as follows: 

 

PROGRAM      SOFTWARE 

 

Program is usually small in size Large in size  

Single developer Team of developers 

Lacks proper user interface Well- designed interface 

Lacks proper documentation Is well documented 

Ad hoc development Systematic Development 

 

 Growing Importance of Software 
 

The importance of software is fast growing. For many engineering and 

other projects, software has become the pivotal tool. For example: 

 
 Software controls generation and distribution of electricity, water 

purification and distribution, robotic systems in production 

plants, vehicles and their engines, traffic flows, household 

equipment, aircraft, air traffic, and passenger bookings etc 

 Software also plays an ever-increasing role in business 

management: it controls equipment  maintenance management, 



CIT432 SOFTWARE ENGINEERING II 

3 

 

 

 

 

logistics, resource allocations, business processes, financial 

transactions, accounting, communication, human resources, etc. 

 

SELF-ASSESSMENT EXERCISE 1 
 

1. What is computer program? 

2. List some areas you feel software are being used. 

3. What do you understand by ad hoc development? 

 

 Engineering 
 

The American Engineers‘ Council for Professional Development, 

defines engineering as the creative application of scientific principles to 

design or develop structures, machines, apparatus, or manufacturing 

processes, or works utilising them singly or in combination; or to 

construct or operate the same with full cognisance of their design; or to 

forecast their behaviour under specific operating conditions; all as 

respects an intended function, economics of operation and safety to life 

and property. 

 

Oxford Advance Learner‘s Dictionary defines ―engineering‖ as the 

activity of applying scientific knowledge (knowledge obtained by 

testing of facts, observation and inferences) to the design, building and 

control of machines, roads, bridges, software etc. Engineering normally 

employs well defined procedures/principles to achieve its objective. 

 

 Software Engineering 
 

Software engineering can be defined as the act of employing established 

engineering principles in the development of good, functional, reliable 

and maintainable computer software. Software engineering deals with 

software developed by teams rather than individual programmers. 

 

However, the definition varies from one author to another, some 

examples include: 

 
 Software engineering is a discipline that integrates methods, 

tools, and procedures for the development of computer software 

(Pressman, 2000). 

 Software engineering is the establishment and the use of sound 

engineering principles to obtain economically software that is 

reliable and works effectively on computers (Mbam B.C , 2002). 

 Software engineering is an emerging discipline that focuses on 

the creation, development, operation and maintenance of cost 

effective, reliable, correct, and high quality solutions to software 

problems (Berry). 



CIT432 SOFTWARE ENGINEERING II 

4 

 

 

 

 

 The application of systematic, disciplined, quantifiable approach 

to development, operation and maintenance of software (IEEE 

Standard Computer Dictionary). 

 Software engineering is the application of a systematic, 

disciplined, quantifiable approach to the development, operation, 

and maintenance of software, and the study of these approaches; 

that is, the application of engineering to software (adapted from 

SWEBOK, the Software Engineering Body of Knowledge). 

 

 What is Well -Engineered Software? 
 

Well-engineered computer software can be described as software that 

does what the user wants and can be made to continue to do what the 

user wants. However, Somerville suggests that well-engineered 

software should: 

 

 Be easy to use 

 Be easy to maintain 

 Be reliable 

 Be efficient 

 Provide an appropriate user interface. 

 

 Why Study Software Engineering? 
 

There are many reasons we study software engineering.  Some of them 

include: 

 
 software development needs the structured application of 

scientific and engineering principles in order to analyse, design, 

construct, document and maintain it 

 like any engineering development, large-scale software 

development also requires the disciplined application of project 

management principles 

 because of software‘s growing importance, its development must 

be managed more carefully than other areas of large projects 

 individual approach is no longer appropriate; and the departure 

point for proper software development should be the realisation 

that software development has grown from an art to a craft, and 

to a proper engineering discipline 

 to acquire skills to be a better programmer: this makes for higher 

productivity and better quality programs 

 to acquire skills to develop large programs 

 it helps you to gather ability to solve complex programming 

problems 



CIT432 SOFTWARE ENGINEERING II 

5 

 

 

 

 

 to learn techniques of specification, design, interface 

development, testing and integration, project management etc. 

 

SELF-ASSESSMENT EXERCISE 2 
 

1. Define engineering in your own terms. 

2. How does software engineering help a programmer to be a better 

programmer? 

 

4.0 CONCLUSION 
 

Software should be considered as more than a computer program. It 

includes documentation associated with development, and the user 

documentation. Software engineering is the establishment and the use of 

sound engineering principles to obtain economically software that is 

functional, reliable and works effectively on computers. Well- 

engineered software should be easy to use, easy to maintain, reliable, be 

efficient and should also provide an appropriate user interface. Software 

engineering should be embraced by software developers since it helps in 

developing software in commercial scale. 

 

5.0 SUMMARY 
 

This unit has explained what computer software is, what engineering is 

all about and how to employ engineering principles in the development 

of functional computer software. You also saw that some authors simply 

see software engineering as an emerging discipline that focuses on the 

creation, development, operation and maintenance of cost effective, 

reliable, correct, and high quality solutions to software problems. 

Whatever the definition or explanation may be, the border line is that 

software engineering helps in the development of functional and reliable 

software. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Define software engineering in your own words. 

2. Discuss the importance of software in any sector of the economy 

of your choice. 

3. List  and  explain  any  three  reasons  it  is  necessary  to  study 

software engineering. 

4. What is the relationship between program and software? 



CIT432 SOFTWARE ENGINEERING II 

6 

 

 

 

 

7.0 REFERENCES/FURTHER READING 
 

Bauer, F. L. Programming as an Evolutionary Process, Proc. 2nd. 

Intern. Conf. Software Engineering, IEEE Computer Society, 

223-234,        January,        1976. Retrieved from  

http://www.sciencedaily.com/    articles/e/engineering.htm 

 

Mbam, B.C.E. (2002). Information Technology and Management 

Information System. Enugu: Our Saviours Press Limited. 

 

Oxford Advanced Learner’s Dictionary (6th edition). 

 

Sajan, M. (2007). Software Engineering (Rev. ed.). New Delhi: S. 

Chand & Company Ltd, pp. 1-5, 27-36, 138-141, 152-158, 2881- 

187. 

 

Wood, M. & Somerville, I. (1988). A Knowledge-Based Software 

Components Catalogue, Software Engineering Environments. 

Ellis Horwood, P. Brererton (Ed.). Chichester, England. pp.116- 

131. 

http://www.sciencedaily.com/


CIT432 SOFTWARE ENGINEERING II 

7 

 

 

 

 

UNIT 2 SOFTWARE EVOLUTION AND SOFTWARE 

CHARACTERISTICS 
 

CONTENTS 
 

1.0     Introduction 

2.0     Objectives 

 Main Content 

 Software Evolution 

 First Generation 

 Second Generation 

 Third Generation 

 Fourth Generation 

 Fifth Generation 

 Software Characteristics 

4.0     Conclusion 

5.0     Summary 

6.0     Tutor-Marked Assignment 

7.0     References/Further Reading 

 

1.0    INTRODUCTION 
 

Computer software has a very long history. It came into existence 

starting from when an English mathematician and inventor designed 

the world‘s first programmable machine. This machine, called the 

Analytical Engine, used punch cards similar to those used in the 

Jacquard loom to select the specific arithmetic operation to apply at each 

step. Inserting a different set of cards changed the computations the 

machine performed. From that time till now, computer software had 

undergone several metamorphoses. These different levels of changes are 

represented as software generations. The latest generation uses sound, 

moving images and agents. An automatic self changing piece of 

software that creates new agent based on the behaviour of the end user. 

Software also has some unique characteristics when compared to the 

hardware. 

 

2.0    OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 define software generations 

 discuss the basic features of each generation 

 differentiate between software and hardware 

 list the basic characteristics of software. 



CIT432 SOFTWARE ENGINEERING II 

8 

 

 

 

 

 MAIN CONTENT 
 

 Software Evolution 
 

The modern concept of an internally stored computer program was first 

proposed by Hungarian-American mathematician John von Neumann in 

1945. His idea was to use the computer‘s memory to store the program 

as well as the data. In this way, programs can be viewed as data and can 

be processed like data by other programs. This idea greatly simplifies 

the role of program storage and execution in computers. However, the 

generation of computer software can be classified as follows: 

 

 First generation 

 Second generation (2GL) 

 Third generation (3GL) 

 Fourth generation (4GL) 

 Fifth generation (5GL). 

 

 First Generation 
 

This generation came up during early 1950s. In this generation, 

computers were programmed by changing the wires and tens of dials 

and switches. Sometimes, these setting could be stored on paper tape 

that looked like a ticker paper from telegraph - a punch tape or punched 

card. With tape and or card, the computers were commanded what, how 

and when to do something. Programming then was done using machine 

language; so to have a flawless program, a programmer needed to have 

very detailed knowledge of the computer. 

 

 Second Generation (2GL) 
 

This generation came into existence in the mid 1950s. This generation 

made use of symbols and are called an assembler (an assembler is a 

program that translates symbolic instructions to processor instruction.) 

The programmer no longer work with one‘s and zero‘s when using 

an assembly language but symbols. These symbols are called 

mnemonics. Each mnemonics stands for one single machine 

instruction. However, for each processor, a different assembler was 

written. 



CIT432 SOFTWARE ENGINEERING II 

9 

 

 

 

 

 Third Generation (3GL) 
 

This generation came into existence at the end of 1950s. This 

generation witnessed ―natural language‖ but interpreters and compilers 

were made. (An Interpreter is a translator that translates high level 

languages on a statement-by-statement basis so that as each language 

statement is encountered, it is converted to machine executable codes 

and executed while a compiler is a translator that transforms high-level 

languages into computer executable language). In 3GL, there was no 

longer need to work in symbols instead, a programmer could use a 

programming language that resembled more to ―natural language‖ e.g. 

FORTRAN, COBOL PASCAL etc. 

 

 Fourth Generation (4GL) 
 

The fourth generation languages (4GL) are languages that consist of 

statements similar to statements in a human language. 4GL are commonly 

used in database programming and scripts. In the fourth generation, the 

primary feature was that you do not indicate HOW a computer must 

perform a task but WHAT it must do. A few instructions in a 4GL 

will do the same as hundreds of instructions in a lower generation 

languages. In most of these cases, one deals with database 

management system. A trained user in this kind of software can 

create an application in a much shorter time for development and 

debugging than would be possible with other generations. Examples of 

4GL are Perl, PHP, Python, Ruby, and SQL. 

 

 Fifth Generation (5GL) 
 

Fifth generation languages (5GL) are used mainly in artificial 

intelligence research.The basis of this generation was laid in the 

1990s by using sound, moving images and agents. Some features of 

5GL are: development of true artificial intelligence; 

development of Natural language processing; advancement in 

parallel processing; advancement in Superconductor 

technology; more user-friendly interfaces with multimedia 

features. Software for the end user may be based on principles of 

knowbot-agents. An automatic self changing piece of software that 

creates new agent based on the behaviour of the end user. Human-like 

quality DNA/RNA (intelligent) algorithms could also play a big role. 

Examples of 5GL are OPS5, Mercury, ICAD(which was built upon Lisp, 

KL-ONE.  

 

SELF-ASSESSMENT EXERCISE 1 
 

What is the basic feature(s) of first and second generation software? 

 

  



CIT432 SOFTWARE ENGINEERING II 

10 

 

 

 Software Characteristics 
 

Software is logical rather than physical and as such, it possesses 

characteristics that are different from that of hardware. According to 

Mbam, B. C. (2003), software characteristics include the following: 

 

 Software is Developed or Engineered 
 

Software is not manufactured in a classical sense. Software is different 

from physical products in a manufacturing plant. Although some 

similarities exist between software development and hardware 

manufacturing, the two activities are fundamentally different. 

 

 Software is usually Custom-Built 
 

Even though we hear of software components, not many components are 

there off-the-shelf. Most of the software are custom-built rather than 

being assembled from existing components. It is however expected that 

in the coming years, software component and reusability will catch up. 

 

 Software does not Wear Out 
 

Unlike any other physical product, software does not wear out. 

Software is not subjected to the environmental factors like heat, dust, 

vibration etc. 

 

 Cost for Support and Modification of Delivered Software is High 
 

Research has shown that cost for support and modification of delivered 

software over the life of a system are typically twice the cost of the 

original acquisition. Even more significant is the fact that the 

customer‘s perception of what the software should be able to do changes 

as experience is gained with its use. 

 

SELF-ASSESSMENT EXERCISE 2 

 

Why is software said to be custom- built? 

 

4.0    CONCLUSION 
 

The changes in software world are classified into generations. Each of 

these generations showcases some basic feature that makes it unique 

from others. The latest generation seeks to imitate human beings. We 

have also explained that software is developed or engineered, software 

does not wear out, software is custom-built and that cost for support and 

modification of delivered software is high. These characteristics 

differentiate software from the hardware. 



CIT432 SOFTWARE ENGINEERING II 

11 

 

 

 

 

5.0     SUMMARY 
 

In this unit, you were taught evolution of the computer software and 

the basic characteristics of software. Computer software was classified 

into first, second, third, fourth and fifth generations. You were also 

made to know that software is logical rather than physical and as such, 

it possesses characteristics different from that of hardware. 

 

6.0    TUTOR-MARKED ASSIGNMENT 
 

1. Compare and contrast between software and hardware 

2. Write short notes on the following software generations 

(a) second generation (b) fourth generation 

 

3. Trace the origin of computer software. 

 

 REFERENCES/FURTHER READING 
 

Chatters, B.W.; Lehman, M.M.; Ramil, J. F. & Werwick, P. (2000). 

Modeling a Software Evolution Process: A Long-Term Case 

Study, Software Process-Improvement and Practice, 5(2-3), 91- 

102. 

 

Mbam, B.C.E. (2002). Information Technology and Management 

Information System. Enugu: Our Saviours Press Limited. 

 

Royce, W. W. Managing the Development of Large Software Systems, 

Proc. 9th. Intern. Conf. of Software Engineering, IEEE Computer 

Society, 1987, 328-338. Originally published in Proc.WESCON, 

1970. Retrieved online on 26/09/2010 at 

http://www.sciencedaily.com/articles/e/engineering.htm 

 

Sajan, M. (2007). Software Engineering (Rev. ed.). New Delhi: S. 

Chand & Company Ltd, pp. 1-5, 27-36, 138-141, 152-158, 2881- 

187 

 

Wood, M. & Somerville, I. (1988). A Knowledge-Based Software 

Components Catalogue, Software Engineering Environments, 

Ellis Horwood, P. Brererton (Ed.). Chichester, England, 116-131. 

http://www.sciencedaily.com/articles/e/engineering.htm
http://www.sciencedaily.com/articles/e/engineering.htm


CIT432 SOFTWARE ENGINEERING II 

12 

 

 

 

 

UNIT 3 CLASSIFICATIONS OF COMPUTER 

SOFTWARE 
 

CONTENTS 
 

1.0 Introduction 

2.0 Objectives 

 Main Content 

 System Software 

 Operating System 

 BIOS and Device Firmware 

 Utility Software 

 Application Software 

 Word Processor 

 Electronic Spreadsheets 

 Desktop Publishing 

 Presentation Software 

 Programming Languages 

 Low Level Languages 

 High Level Languages 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 

The computer software is categorised basically into three; the system 

software, the application software and the programming languages. 

Similar to natural languages, such as English, programming languages 

have a vocabulary, grammar, and syntax. However, natural languages 

are not suited for programming computers. These three basic 

classifications of software are the main focus in this unit. 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

 describe Instances and Schemes. Explain clearly with examples 

of system software 

 differentiate between application software and their uses 

 discuss operating system 

 describe what programming languages are 

 explain  the  relationship  between  system  software  and  other 

software 

 differentiate between the low level languages and the high level 

languages. 



CIT432 SOFTWARE ENGINEERING II 

13 

 

 

 

 

 MAIN CONTENT 
 

 System Software 
 

System software is computer software designed to operate the computer 

hardware and to provide and maintain a platform for running application 

software. System software helps use the operating system and computer 

system. The purpose of system software is to insulate the applications 

programmer as much as possible from the details of the particular 

computer complex being used, especially memory and other hardware 

features, and such accessory devices as communications, printers, 

readers, displays, keyboards etc. System software includes operating 

systems, diagnostic tools, servers, window systems, utilities, language 

translator (compilers, interpreters, assemblers), data communication 

programs, database systems, game engines, industrial automation, and 

software as a service applications.. 

 

The most basic types of system software are: Operating system, the 

computer BIOS and device firmware, and the utility software. 

 

 Operating System (OS) 
 

Operating System (OS) is the basic software that controls a computer. 

The operating system has many functions: It coordinates and 

manipulates computer hardware, such as computer memory, printers, 

disks, keyboard, mouse, and monitor; it organises files on a variety of 

storage media, such as floppy disk, hard drive, compact disc, digital 

video disc, and tape. It also manages hardware errors and the loss of data 

among others. It provides a platform to run high-level system and 

application software. Prominent examples are Microsoft Windows, 

MacOS, Android, and Linux. 

 

 The Computer BIOS and Device Firmware 
 

The computer BIOS (Basic Input/Output System) is a type of firmware 

used during the boot process (power-on/start up). F i rmware  i s  a  

sof tware  program or  se t  o f  ins t ruc t ions  programmed  on  a  

hardware  device .  D evice firmware are software routines stored in 

read-only memory (ROM). Unlike random access memory (RAM), 

read-only memory stays intact even in the absence of electrical power. 

Startup routines and low-level input/output instructions are stored in 

firmware which provides basic functionality to operate and control the 

hardware connected to or built into the computer. 

 

 The Utility Software 
 

Utility software helps to analyse, configure, optimise and maintain the 

computer system. 



CIT432 SOFTWARE ENGINEERING II 

20 

 

 

 

Utility software such as an editor or a debugger, are designed to perform 

a particular function. The term utility usually refers to software that 

solves narrowly focused problems or those related to computer system 

management. They could be other system software. Utility software is 

used to support the computer infrastructure, in contrast to application 

software, which is aimed at directly performing tasks that benefit 

ordinary users. Examples of utility software are antivirus software, 

backup software, and disk tools. 

 

SELF-ASSESSMENT EXERCISE 1 
 

Do you think that system software is indispensible in the computer? 

Give reasons for your answer. 

 

 Application Software 
 

Application software, also known as an application, is computer 

software designed to help the user to perform singular or  multiple 

related specific tasks. Examples include word processor, presentation 

software, spreadsheet, desktop publishing, enterprise software, 

accounting software, office suites, graphics software, and media players 

etc. Let us now highlight some common application software. 

 

 Word Processor 
 

Word processor (more formally known as document preparation system) 

is a computer application used for the production (including 

composition, editing, formatting, and possibly printing) of any sort of 

printable material. Word processors are descended from early text 

formatting tools (sometimes called text justification tools, from their 

only real capability). Word processing was one of  the earliest 

applications for the personal computer in office productivity. Although 

early word processors used tag-based markup for document formatting, 

most modern word processors take advantage of a graphical user 

interface providing some form of What You See Is What You Get 

(WYSIWYG) editing. Most are powerful systems consisting of one or 

more programs that can produce any arbitrary combination of images, 

graphics and text, the later handled with type-setting capability. 

 

Microsoft Word is the most widely used word processing software. 

Microsoft estimates that over 500,000,000 people use the Microsoft 

Office suite, which includes Word. Many other word processing 

applications exist, including WordPerfect, AppleWorks, OpenOffice, 

and others. Word processing typically implies the presence of text 

manipulation functions that extend beyond a basic ability to enter 

and change text, such as automatic generation of: 

 

 batch  mailings  using  a  form  letter  template  and  an  address 



CIT432 SOFTWARE ENGINEERING II 

15 

 

 

database (also called mail merging) 

 indices of keywords and their page numbers 

 tables of contents with section titles and their page numbers 

 tables of figures with caption titles and their page numbers 

 cross-referencing with section or page numbers 

 footnote numbering 

 new versions of a document using variables (e.g. model numbers, 

product names, etc.). 

 

Other word processing functions include "spell checking" (actually 

checks against wordlists), "grammar checking" (checks for what seem to 

be simple grammar errors), and a "thesaurus" function (finds words with 

similar or opposite meanings). Other common features include 

collaborative editing, comments and annotations, support for images and 

diagrams and internal cross-referencing. 

 

 Electronic Spreadsheet Applications 
 

A spreadsheet is an electronic document in which data are arranged in 

the rows and columns of a grid and can be manipulated and used in 

calculations. The word ―spreadsheet‖ came from ―spread‖ in its sense of 

a newspaper or magazine item (text and/or graphics) that covers two 

facing pages, extending across the center fold and treating the two 

pages as one large one. The compound word ―spread-sheet‖ came to 

mean the format used to present book-keeping ledgers—with columns 

for categories of expenditures across the top, invoices listed down the 

left margin, and the amount of each payment in the cell where its row 

and column intersect—which were, traditionally, a ―spread‖ across 

facing pages of a bound ledger (book for keeping accounting records) 

or on oversized sheets of paper ruled into rows and columns in that 

format and approximately twice as wide as ordinary paper. 

 

A spreadsheet is a computer application that simulates a paper, 

accounting worksheet. It displays multiple cells that together make up a 

grid consisting of rows and columns; each cell contains alphanumeric 

text, numeric values or formulas. A formula defines how the content of 

that cell is to be calculated from the contents of any other cell (or 

combination of cells) each time any cell is updated. Spreadsheets are 

frequently used for financial information because of their ability to re- 

calculate the entire sheet automatically after a change to a single cell is 

made. 

 

Lotus 1-2-3 was the leading spreadsheet when DOS was the dominant 

operating system. Excel now has the largest market share on the 

Windows and Macintosh platforms. Other spreadsheet programs include 

Google Sheets, LibreOffice, OpenOffice. 

 

  

  



CIT432 SOFTWARE ENGINEERING II 

20 

 

 

 Desktop Publishing Software 
 

The term ―desktop publishing‖ is commonly used to describe page 

layout skills. However, the skills and software are not limited to paper 

and book publishing. The same skills and software are often used to 

create graphics for point of sale displays, promotional items, trade show 

exhibits, retail package designs and outdoor signs. Desktop publishing 

began in 1985 with the introduction of MacPublisher, the first of What 

You See Is What You Get (WYSIWYG) layout program. This was run 

on the original 128K Macintosh computer. Desktop publishing 

programs were specifically designed to allow elaborate layout for 

publication, but often offered only limited support for editing. Typically, 

desktop publishing programs allowed users to import text that was 

written using a text editor or word processor. Before the advent of 

desktop publishing, the only option available to most persons for 

producing typed (as opposed to handwritten) documents was a 

typewriter, which offered only a handful of typefaces (usually fixed- 

width) and one or two font sizes. 

 

Desktop publishing (also known as DTP) combines a personal computer 

and WYSIWYG page layout software to create publication documents 

on a computer for either large scale publishing or small scale local 

multifunction peripheral output and distribution. Examples of desktop 

publishing software include Adobe InDesign, Microsoft Publisher, 

QuarkXPress, Scribus. 

 

 Presentation Software 
 

A presentation program is a computer software package used to display 

information, normally in the form of a slide show. It typically includes 

three major functions: an editor that allows text to be inserted and 

formatted, a method for inserting and manipulating graphic images and a 

slide-show system to display the content. In the mid-1980s, 

developments in the world of computers changed the way presentations 

were created. Inexpensive specialized applications now made it possible 

for anyone with a PC or Macintosh to create professional-looking 

presentation graphics. 

 

A presentation program is supposed to help both the speaker with an 

easier access to his ideas and the participants with visual information 

which complements the talk. There are many different types of 

presentations including professional (work-related), education, 

entertainment, and for general communication. Presentation programs 

can either supplement or replace the use of older visual aid technology, 

such as pamphlets, handouts, chalkboards, flip charts, posters, slides and 

overhead transparencies. Text, graphics, movies, and other objects are 

positioned on individual pages or ―slides‖ or ―foils‖. The ―slide‖ 

analogy is a reference to the slide projector, a device that has become 

somewhat obsolete due to the use of presentation software. Slides can be 



CIT432 SOFTWARE ENGINEERING II 

17 

 

 

printed, or (more usually) displayed on-screen and navigated through at 

the command of the presenter. Transitions between slides can be 

animated in a variety of ways, as the emergence of elements on a slide 

itself. 
 

Typically, a presentation has many constraints and the most important is 

the limited time to present consistent information. The first commercial 

computer software specifically intended for creating WYSIWYG 

presentations was developed at Hewlett Packard in 1979 and called 

BRUNO and later HP-Draw. The first software displaying a presentation 

on a personal computer screen was VCN ExecuVision, developed in 

1982. This program allowed users to choose from a library of images to 

accompany the text of their presentation. A typical example of 

presentation software in use today is Microsoft PowerPoint. 

 

Other presentation software are Prezi, Vyond, Zoho Show, Google 

Slides, Keynote, Haiku Deck, Slidedog, CustomShow, Visme. 

 

SELF-ASSESSMENT EXERCISE 2 
 

Give a comprehensive listing of other application software in use today. 

 

 Programming Languages 
 

Programming languages are the various methods of writing computer 

instructions. A programming language is a set of commands, 

instructions, and other syntax used to create a software 

program.The instructions adhere to a particular set of rules for each 

language. The programming languages are used to create application 

software discussed in section 3.2 and other software similar to them. 

There are basically two forms of programming languages; the low level 

and the high level languages. 

 

 Low Level Languages 
 

The low level languages are divided into two; the machine language and 

the assembly language. 

 

 Machine Language: It deals directly with the computer 

hardware. It uses 0‘s and 1‘s to form commands that cause the 

computer to perform series of operations as specified by the 

programmer. It is a computer programming language 

consisting of binary or hexadecimal instructions which a 

computer responds to directly. Machine language is difficult 

to use and more time consuming. 

 Assembly Language: This is also a low level language. The 

assembly language uses symbols (called mnemonics) instead of 

0‘s and 1‘s. Assembly language is  a  programming 

language that  consis ts  of  ins t ruct ions  that  are  



CIT432 SOFTWARE ENGINEERING II 

20 

 

 

mnemonic codes  for corresponding machine 

language ins t ructions .  This language reduced the 

complexity of program authoring. However, each computer or 

family of computers has its own assembly language which 

prevented the software of one computer model from being used 

on a different computer model.  

 

 High Level Languages 
 

High level languages are more like natural languages of the computer 

users. T h e y  a r e  d e s i g n e d  t o  s i mp l i f y  c o m p u t e r  

p r o g r a mmi n g . These types of languages do not bother about the 

knowledge of the computer hardware. They were developed for two 

reasons; for the programmer to work on different computers without 

having to learn a new assembly language each time, and secondly, for 

software written on one computer to be used on another. Translators (a 

complier, or interpreter) were used to help solve these problems by 

translating program into machine language and checking the program 

syntax errors. Examples of high level languages are Visual Basic, Java, 

Python, C, C++, C#, PHP, Ruby, JavaScript, Perl, Pascal, etc. 

 

SELF-ASSESSMENT EXERCISE 3 
 

Explain why it is easier to program in high level languages than in low 

level languages. 

 

4.0    CONCLUSION 
 

The system software is dedicated to operate the computer hardware and 

to provide and maintain a platform for running application software. The 

purpose of system software is to insulate the applications programmer as 

much as possible from the details of the particular computer complex 

being used, especially memory and other hardware features. The 

application software helps computer users to solve their day-to-day 

problem. The programming languages enable programmers to instruct 

the computer on what to do and how to do them. 

 

5.0     SUMMARY 
 

In this unit, you have learnt that: 

 

 computer software can be classified into three. Namely: the 

system software, the application software and the programming 

languages 

 system software operates the hardware 

 application software helps users solve their problems 

 programming languages enable programmers create instructions 

for the computer 

 the machine language uses 0‘s and 1‘s to form commands 



CIT432 SOFTWARE ENGINEERING II 

19 

 

 

 the assembly language uses symbols (mnemonics) 

 the high level languages use natural language like English 

 utility usually refers to software that solves narrowly focused 

problems or those related to computer system management. 

 Operating  System (OS)  is  the  basic  software  that  controls  a 

computer. 

 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Explain the relationship between the system software and the 

application software. 

 

(a) Explain the following: 

 

i. The low level languages 

ii. The high level languages 

 

(b) Which of the languages in (a) above needs a translator and why? 

 

2. Itemize the specific functions of the operating system. 

3. What are the basic features of a word processor? 
4. Machine language is the language the computer understands. 

Explain. 

 

7.0 REFERENCES/FURTHER READING 
 

Bauer, F. L., Programming as an Evolutionary Process, Proc. 2nd. 

Intern. Conf. Software Engineering, IEEE Computer Society, 

223-234, January, 1976. http://alistair.cockburn.us/The+end+of+ 

software+engineering+and+the+start+of+economic-cooperative+ 

gaming.retrieved 24/09/2010. 

 

Royce, W. W. Managing the Development of Large Software Systems, 

Proc. 9th. Intern. Conf. of Software Engineering, IEEE Computer 

Society, 1987, 328-338 Originally published in Proc.WESCON, 

1970. Retrived online on 26/09/2010 at http://www.sciencedaily. 

com/articles/e/engineering.htm 

 

Sajan, M. (2007). Software Engineering (Rev. ed.). New Delhi: S. 

Chand  & Company  Ltd.,   pp.  1-5,  27-36, 138-141,  152-158, 

2881-187. 

 

Somerville, I. (1999). Software Engineering (7th ed.). Menlo Park, CA: 

Addison-Wesley. 

 

 

 

 

http://alistair.cockburn.us/The%2Bend%2Bof%2B


CIT432 SOFTWARE ENGINEERING II 

20 

 

 

Wood, M. & I. Sommerville, A. (1988). Knowledge-Based Software 

Components Catalogue, Software Engineering Environments, 

Ellis Horwood & P. Brererton (Eds.). Chichester, England, 116- 

131. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CIT432 SOFTWARE ENGINEERING II 

21 

 

 

 

MODULE 2         SOFTWARE ENGINEERING MODELS 
 

Unit 1 Overview of Software Development Models 

Unit 2 The Waterfall Model and the Build-and-Fix Model 

Unit 3 The Rapid Prototyping Model and the Spiral Model 
 

 

UNIT 1 OVERVIEW OF SOFTWARE DEVELOPMENT 

MODELS 
 

CONTENTS 
 

1.0     Introduction 

2.0     Objectives 

 Main Content 

 Definition and Meaning of Life Cycle Model 

 Background/Origin of Software Model 

 Classes of Software Model 

 Reasons for Articulating Software Life Cycle Model 

 Different Types of Software Development Models 

 Emerging Trends and New Directions in Software 

Development 

4.0     Conclusion 

5.0     Summary 

6.0     Tutor-Marked Assignment 

7.0     References/Further Reading 

 

1.0    INTRODUCTION 
 

Standard software product goes through series of processes to evolve. 

To enable software developers produce good, functional, maintainable 

software, there have been some software models which enhance the 

developmental effort. These models account for their inception, initial 

development, productive operation, upkeep, and retirement from one 

generation to another. This unit takes an overview of most of the 

common software development models. We shall begin with 

background and definitions of traditional software life cycle models that 

dominate most textbook discussions and current software development 

practices. This will be followed by a more comprehensive review of few 

models of software evolution that are of current use as the basis for 

organizing software engineering projects and technologies. 



CIT432 SOFTWARE ENGINEERING II 

22 

 

 

 

 

2.0    OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain software development model 

 describe the origin of software development model 

 discuss briefly the classes of software models 

 differentiate between the types of software engineering model 

 discuss the importance of these models in software development. 

 

 MAIN CONTENT 
 

 Definition and Meaning of Life Cycle Model 
 

Different tutors/authors may define software life cycle model in 

different ways but let us simply define ―software life cycle model‖ as 

the series of steps through which the software product progresses. 

It is a conceptual framework describing all activities in a software 

development project from planning to maintenance. Software 

development life cycle (SDLC) is a series of phases that provide a 

common understanding of the software building process. Software life 

cycle model often represent a networked sequence of activities, objects, 

transformations, and events that embody strategies for accomplishing 

software evolution. Such models can be used to develop more precise 

and formalized descriptions of software life cycle activities. Their 

power emerges from their utilization of a sufficiently rich notation, 

syntax, or semantics, often suitable for computational processing.  

 

You can think of SDLC models as tools that you can use to better 

deliver your software project. Therefore, knowing and understanding 

each model and when to use it, the advantages and disadvantages of each 

one are important to know which one is suitable for the project context. 

The good software engineer should have enough knowledge on how to 

choose the SDLC model based on the project context and the business 

requirements. 

 

 Background/Origin of Software Models 
 

Explicit software life cycle models evolution date back to the earliest 

projects developing large software systems in the 1950s and 1960s 

(Hosier, 1961; Royce, 1970). At that time, the apparent purpose of 

these early software life cycle models was to provide a conceptual 

scheme for rationally managing the development of software systems. 

Such a scheme could therefore serve as a basis for planning, 

organizing, staffing, coordinating, budgeting, and directing software 

development activities. Since the 1960s, many descriptions of the classic 

software life cycle have appeared (Hosier, 1961; Royce, 1970; Boehm, 

http://melsatar.blog/2017/06/13/what-do-you-need-to-know-about-the-eight-software-development-phases/


CIT432 SOFTWARE ENGINEERING II 

23 

 

 

1976; Distaso, 1980; Scacchi, 1984; Somerville, 1999). Royce (1970) 

originated the formulation of the software life cycle using the now 

familiar "waterfall‖ model and other recent models. 
 
 

 Classes of Software Model 
 

A software life cycle model is either a descriptive or prescriptive 

characterization of how software is or should be developed (Marciniak, 

2001). A descriptive model describes the history of how a particular 

software system was developed. Descriptive models may be used as the 

basis for understanding and improving software development processes 

or for building empirically grounded prescriptive models (Curtis, 

Krasner; Iscoe, 1988). Descriptive life cycle models describe how 

particular software systems are actually developed in specific settings. 

As such, they are less common and more difficult to articulate for an 

obvious reason: one must observe or collect data throughout the life 

cycle of a software system, a period of elapsed time often measured in 

years. Also, descriptive models are specific to the systems observed and 

only realizable through systematic comparative analysis. 

 

On the other hand, a prescriptive model prescribes how a new software 

system should be developed. Prescriptive models are used as guidelines 

or frameworks to organize and structure how software development 

activities should be performed, and the order it should be performed. 

Typically, it is easier and more common to articulate a prescriptive life 

cycle model for how software systems should be developed. This is 

possible since most of such models are intuitive or well reasoned when 

developing different kinds of application systems, in different kinds of 

development settings, using different programming languages, with 

differentially skilled staff, etc. 

 

However, prescriptive models are also used to package the development 

tasks and techniques for using a given set of software engineering tools 

or environment during a development project. Therefore, this suggests 

the prescriptive software life cycle models will dominate attention until 

a sufficient base of observational data is available to articulate 

empirically grounded descriptive life cycle models. 

 

SELF-ASSESSMENT EXERCISE 1 
 

Explain the descriptive model. 

 

 Reasons for Articulating Software Life Cycle Model 
 

From the above explanation of descriptive and prescriptive software life 

cycle model, we can see that there are a variety of reasons for 

articulating software life cycle models. Some of them are: 



CIT432 SOFTWARE ENGINEERING II 

24 

 

 

 

 

 Software life cycle model serves as a guideline to organize, plan, 

staff, budget, schedule and manage software project over 

organizational time, space, and computing environments 

 Software life cycle model serves as prescriptive outline for what 

documents to produce for delivery to client 

 Software life cycle model serves as a basis for determining what 

software engineering tools and methodologies will be most 

appropriate to support different life cycle activities 

 Software life cycle model serves as a framework for analyzing or 

estimating patterns of resource allocation and consumption 

during the software life cycle (Boehm, 1981). 

 

It also serves as a basis for conducting empirical studies to determine 

what affects software productivity, cost, and overall quality. 

 

SELF-ASSESSMENT EXERCISE 2 
 

How does a software life cycle model serve as a prescriptive outline for 

the documents to produce for delivery to client? 

 

 Different Software Development Models 
 

In this section, we shall take a little time to introduce the different 

software life cycle models in use today. We will only highlight them 

here and in subsequent units dwell comprehensively with some of them 

we feel are most popular. 

 

 Build-and-Fix Model: Build-and-fix model is a software 

development model where the entire software product is built and 

delivered to the client. The client points out what has to be 

changed and changes are made until the client is satisfied 

(Stephen, 2003). The product then goes into operation mode. 

 Spiral Model: Spiral model is a risk-based model (Stephen, 

2003). Risk-based implies that the major objectives here is to 

determine the risks involved in developing that software product 

and then resolve each risk in turn; that is, attempt to remove or at 

least minimise that risk. 

 Prototyping Model: The prototyping model is a systems 

development method in which a prototype is built, tested and then 

reworked as necessary until an acceptable outcome is achieved 

from which the complete system or product can be developed.  It 

is an activity that can occur in software development and it is 

used to visualize some component of the software to limit the gap 

of misunderstanding the customer requirements by the 

development team. 

 Waterfall Model: Waterfall model is a type of model whereby 

the software developer follows a well-defined engineering 

https://searcherp.techtarget.com/definition/prototype


CIT432 SOFTWARE ENGINEERING II 

25 

 

 

procedure in the development of a software product. The phase to 

go through include; requirement analysis, specification, design, 

coding, testing and validation, deployment and maintenance. 

 Incremental Model: The incremental model performs the 

waterfall in overlapping sections attempting to compensate for 

the length of waterfall model projects by producing usable 

functionality earlier. This may involve a complete upfront set of 

requirements that are implemented in a series of small projects. 

As an alternative, a project using the incremental model may start 

with general objectives. Then some portion of these objectives is 

defined as requirements and is implemented, followed by the next 

portion of the objectives until all objectives are implemented. 

 Clean Room: The clean room technique attempts to keep 

contaminants (software bugs) out of the product. The idea is to 

control cost by detecting bugs as early as possible, when they are 

less costly to remove. Rather than using natural languages like 

English, more formal notations are used to produce specifications 

on which all software design and requirements validation is 

based. Off-line review techniques are used to develop 

understanding of the software before it is executed. Software is 

intended to execute properly the first time. Programmers are not 

allowed to perform trial and error executions, though automation 

checks syntax, data flow, and variable types. Testing uses 

statistical examination to focus on the detection of the errors most 

likely to cause operational failures. 

 Extreme Programming: Extreme Programming does not use 

specifications. The test cases initially defined are used as a 

description of the requirements. These are then used after the 

implementation to help check the (sub-) product. The idea in this 

excerpt from extreme programming can also be found in the W- 

model: the left part of the ―W‖ can simply be omitted. This then 

leaves just the testing activities as tasks up to the point of 

implementation. The requirements for the system to be developed 

are then extracted from the specified test cases.  

 V- Model: The V-model is another linear model with each stage 

having a corresponding testing activity. Testing of the product is 

planned in parallel with a corresponding phase of development in 

V-model. 

 

 

 

 

 

 

 

 

 

 

 



CIT432 SOFTWARE ENGINEERING II 

26 

 

 

 

 

 

 
 

 

 The ―V‖ is also a synonym for verification and validation. This 

model is very simple and easy to understand. By the ordering 

of activities in time sequence and with abstraction levels, the 

connection between development and test activities becomes 

clear. Oppositely laying activities complement one another i.e. 

serve as a base for test activities. So, the system test is carried 

out on the basis of the results specification phase. Many of the 

process models currently used can be more generally connected 

by the V-model where the ―V‖ describes the graphical 

arrangement of the individual phases. The ―V‖ is also a synonym 

for verification and validation. The coarse view of the model 

gives the impression that the test activities first start after the 

implementation. However, in the description of the individual 

activities, the preparatory work is usually listed. So, for 

example, the test plan and test strategy should be worked out 

immediately after the definition of the requirements. 

 Synchronise and Stabilise Model: In this model, during the 

requirements analysis, interview of potential customers are 

conducted and requirement document is developed. Once these 

requirements have been captured, specifications are drawn up. 

The project is then divided into 3 or 4 builds. Each build is 

carried out by small team working in parallel. At the end of each 

day, the code is synchronised (test and debug). Also, at the end of 

the build, it is stabilised by freezing the build and remaining 

defects because of the synchronisation components always work 

together. 



CIT432 SOFTWARE ENGINEERING II 

27 

 

 

 Object-Oriented Model: The object-oriented approach to 

software development focuses on real-world objects. It is based 

on the premise that there exists a fundamental human limitation 

to manage more than seven different objects or concepts at one 

time. Grady Booch suggests that the principles of software 

engineering can help us decompose systems so that we never 

simultaneously deal with more than seven entities. Object- 

oriented popularity is increasing in concert with the increasing 

complexity of software systems. Object-oriented includes object- 

oriented analysis (OOA), object oriented design (OOD), and 

object oriented programming (OOP). 

 Agile Model: Agile model is a combination of iterative and 

incremental process models with focus on process adaptability 

and customer satisfaction by rapid delivery of working software 

product. Agile model breaks the product into small incremental 

builds. It helps teams deliver value to their customers faster and 

with fewer headaches. Agile comes in different flavors. Today, 

its most common subtypes are Scrum, Extreme Programming, 

and Kanban. 

 

 

In the subsequent units of this module, we shall take much time to look 

at four of these models in details. These four engineering models will 

be treated as prescriptive model even though they may serve as 

descriptive models. 

 

 Emerging Trends and New Directions in Software 

Development 
 

In addition to the ongoing interest, debate, and assessment of process- 

centered or process-driven software engineering environments that rely 

on process models to configure or control their operation (Ambriola, 

1999; Garg and Jazayeri, 1996), there are a number of promising 

avenues for further research and development with software process 

models. These opportunities areas and sample direction for further 

exploration include: 

 

 Software process simulation (Raffo et al., 1999; Raffo and 

Scacchi, 2000) efforts which seek to determine or experimentally 

evaluate the performance of classic or operational process models 

using  a  sample  of  alternative  parameter  configurations  or 



CIT432 SOFTWARE ENGINEERING II 

28 

 

 

 

 

empirically derived process data. Simulations of empirically 

derived models of software evolution or evolutionary processes 

also offer new avenues for exploration (Chatters, Lehman et al., 

2000; Mockus, 2000). 

 Web-based software process models and process engineering 

environments (Bolcer, 1998; Grundy, 1998; Penedo, 2000; 

Scacchi and Noll, 1997) that seek to provide software 

development workspaces and project support capabilities that are 

tied to adaptive process models (e.g. Engineering Web 

Applications with Java). 

 Software and  business processes  reengineering which  focuses 

attention to opportunities that emerge when the tools, techniques, 

and concepts for each disciplined are combined to their relative 

advantage (Scacchi and Mi, 1997; Scacchi and Noll, 1997; 

Scacchi, 2000). This in turn is giving rise to new techniques for 

redesigning, situating, and optimising software process models 

for specific organisational and system development settings 

(Scacchi and Noll, 1997; Scacchi, 2000) (e.g. Business 

Reengineering in the Age of the Internet). 

 Understanding, capturing, and operationalising process models 

that characterise the practices and patterns of globally distributed 

software development associated with open source software 

(DiBona, 1999; Fogel, 1999; Mockus, 2000), as well as other 

emerging software development processes, such as extreme 

programming and Web-based virtual software development 

enterprises or workspaces (Noll and Scacchi, 1999, 2001; 

Penedo, 2000). 

 

SELF-ASSESSMENT EXERCISE 3 
 

1. List any seven (7) software engineering models you know. 

2. Which of the software techniques (models) attempt to keep 

contaminants (software bugs) out of the product? 

3. What is a prototype? 

 

4.0    CONCLUSION 
 

In this unit, you have learnt that in order to develop good functional and 

maintainable software, there are some software models that serve as a 

guide for software developers. We went further to define and explain 

what a software development model is. We also categorised the 

software models into descriptive and prescriptive models. Moreover, we 

x-rayed some specific reasons for articulating software development 

models. We again surveyed the emerging trends and new directions in 

software development. We ended the unit by taking a view at some 

common software development models. 



CIT432 SOFTWARE ENGINEERING II 

29 

 

 

 

 

5.0 SUMMARY 
 

You can now explain what a software development model is. You can 

as well comfortably state and explain reasons why software models are 

needed. Descriptive and prescriptive software were also examined. 

Furthermore, you learnt the various software development models that 

can be employed in the development of good, functional and 

maintainable software. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Explain clearly, the prescriptive model and the descriptive model. 
2. Explain in few sentences, the basic features of the following 

models: 

 

a. Synchronise and stabilise model 

b. Object-oriented model 

c. Extreme programming 

d. V-model 

 

3. List and explain any five reasons for articulating the software 

development model 

4. Examine briefly, any two emerging trends and new directions in 

software development efforts. 

 

7.0 REFERENCES/FURTHER READING 
 

Garg, P.K.; Mi, P.; Pham, T.; Scacchi, W. & Thunquest, G. (1994). The 

SMART Approach for Software Process Engineering, Proc. 16th. 

Intern. Conf. Software Engineering, 341 – 345. 

 

Sajan, M. (2007). Software Engineering. (Rev. ed.) New Delhi: S. 

Chand & Company Ltd.,   , pp. 1-5, 27-36, 138-141, 152-158, 

2881-187. 

 

Scacchi, W. & Mi, P. (1997). Process Life Cycle Engineering: A 

Knowledge-Based Approach and Environment. Intelligent 

Systems in Accounting, Finance, and Management, 6(1):83-107. 

 

Scacchi, W. & Noll, J. (1997). Process-Driven Intranets: Life Cycle 

Support for Process Reengineering. IEEE Internet Computing, 

1(5):42-49. 

 

Scacchi, W. (1984). Managing Software Engineering Projects: A Social 

Analysis, IEEE Trans. Software Engineering, SE-10,1, 49-59, 

January. 



CIT432 SOFTWARE ENGINEERING II 

30 

 

 

 

 

Scacchi, W. (2000). Understanding Software Process Redesign using 

Modeling, Analysis and Simulation. Software Process -- 

Improvement and Practice 5(2/3):183-195. 

 

Selby, R.W.; Basili, V.R. & Baker, T. (1985). CLEANROOM Software 

Development. New York: Empirical Press. 

 

Wood, J. & Silver, D. (1995). Joint Application Development. New 

York: Wiley and Sons, Inc. 

 

Wood, M. & Sommerville, I. (1988). A Knowledge-Based Software 

Components Catalogue, Software Engineering Environments, 

Ellis Horwood, P. Brererton (Ed.). Chichester, England, pp. 116- 

131. 

 

Yu, E.S.K. & Mylopoulos, J. (1994). Understanding "Why" in Software 

Process Modelling, Analysis, and Design, Proc. 16th. Intern. 

Conf. Software Engineering, 159 -168. 



CIT432 SOFTWARE ENGINEERING II 

31 

 

 

 

 

UNIT 2 THE WATERFALL MODEL AND THE BUILD- 

AND-FIX MODEL 
 

CONTENTS 
 

1.0     Introduction 

2.0     Objectives 

4.0     Main Content 

 Description of Waterfall Model 

 Phases Involved in Waterfall Model and How it 

Works 

 Advantages  and  Disadvantages  of  the  Waterfall 

Model 

 Where to Use the Waterfall Model 

 Description of the Build-and-Fix Model 

 Phases Involved in Build-and-Fix Model and how it 

Works 

 Advantages and Disadvantages of the Code-and-Fix 

Model 

 Where to Use the Build-and-Fix Model 

4.0     Conclusion 

5.0     Summary 

6.0     Tutor-Marked Assignment 

7.0     References/Further Reading 

 

 INTRODUCTION 
 

Building good functional, maintainable software is a challenging 

adventure. In spite of this, good and functional software is of paramount 

importance to almost every human endeavour today. Engineering 

approach to software development has brought a new dawn to the 

software world. In the earliest days of software development, code was 

written and then debugged. There was no formal design or analysis. This 

code and debug approach rapidly became less than optimal as complex 

software systems were required. Since the approach to developing 

complex hardware systems was well understood, it provided a model for 

developing software. This brought about most of the software 

engineering models. The waterfall model was derived from engineering 

models to put order in the development of large software products 

(Sajan Mathew, 2001). The waterfall model consists of several 

stages/phases which are processed in a linear fashion. Code-and-fix 

model is very similar to the waterfall model but in this case, the entire 

product is built and then delivered to the client. The client points out 

what has to be changed and the developer affects the changes to the 

satisfaction of the client. In this unit, we shall consider basically the 

waterfall model and the code-and-fix model. 



CIT432 SOFTWARE ENGINEERING II 

30 

 

 

 

 

2.0    OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain the waterfall model of software life cycle 

 list the phases involved in waterfall model 

 discuss the advantages and disadvantages of the waterfall model 

 explain the build-and-fix model 

 discuss the advantages and disadvantages of the build-and-fix 

model 

 explain when the build-and-fix model is appropriate to use. 

 

 MAIN CONTENT 
 

 Description of Waterfall Model 
 

 
 

The waterfall model is an approach to software development that 

emphasizes completing a phase of the development before proceeding to 

the next phase. The Waterfall Model is a linear sequential flow in which 

progress is seen as flowing steadily downwards (like a waterfall) 

through the phases of software implementation. This means that any 

phase in the development process begins only if the previous phase is 

complete. The waterfall model was derived from engineering models to 

put some order in the development of large software product. It consists 

of different stages which are processed in a linear fashion. In 

conjunction with certain phase completions, a baseline is established 

that "freezes" the products of the development at that point. If a need is 

identified to change these products, a formal change process is followed 

http://melsatar.blog/2018/02/16/the-waterfall-model-a-different-perspective/


CIT432 SOFTWARE ENGINEERING II 

33 

 

 

to make the change. The graphic representation of these phases in 

software development resembles the downward flow of a waterfall. In 

the waterfall model, no phase is started until the result of the previous 

phase has been carefully verified. 

 

The Waterfall Model was the first Process Model to be introduced. It is 

also referred to as a linear-sequential life cycle model.  It is very 

simple to understand and use.  In a waterfall model, each phase must be 

completed fully before the next phase can begin. This type of software 

development model is basically used for a project which is small and 

there are no uncertain requirements. 

 

 

3.1.1  Phases Involved in Waterfall Model and how it Works 
 

The different stages/phases involved are: 

 

 Requirements stage/ phase 

 Specification stage/phase 

 Planning stage/phase 

 Design stage/phase 

 Implementation stage/phase 

 Integration stage/phase 

 Operations stage/phase 

 Retirement. 

http://tryqa.com/what-are-the-software-development-models/
http://tryqa.com/what-are-the-software-development-models/


CIT432 SOFTWARE ENGINEERING II 

30 

 

 

 

 

The life cycle phases of the waterfall model are shown in the figure 

below: 
 

 

 

 
Figure 2.1: Stephen, (2001). Life Cycle Phases of the Waterfall Model. 

Changed Requirements Requirements 

Verify Verify 

Specification 

Verify 

Planning 

Verify 

Design 

Verify 

Implementation 

Test 

Integration 

Test 

Development Operations & maintenance 

Maintenance 





CIT432 SOFTWARE ENGINEERING II 

32 

 

 

 

 

Let us discuss in details, each of the stages/phases shown in the figure 

above. 

 

 Requirement Stage/Phase: In this phase (first phase), members 

of the development team meet with the client (customer) and 

members of the client organisation. Here, the development team 

aims at determining exactly what the client‘s needs are. If the 

client currently has a manual system in place that is to be 

replaced by the proposed automated products, the developers will 

obtain a detailed understanding of the manual system and why it 

is considered inadequate. To help developers gather the needed 

understanding, developers will have to interview appropriate 

members of the client‘s organisation. Developers should also 

study relevant documents (organisational charts, procedure 

manuals, operational manuals etc). The findings of the 

requirement team are presented in the form of a document. The 

document will be thoroughly checked (refined) before proceeding 

to the next stage. 

 Specification Stage/Phase: Specification is the second stage. At 

this stage, the development team having ascertained the client‘s 

real needs in form of a requirement document draws the 

specification. A specification document is a written document 

that states exactly what the proposed system (product) is to do. 

While drawing the specification document, the developers may 

obtain more understanding/insights into the client‘s requirement. 

If this happens, requirement document will be revisited and 

amended to reflect the latest discovery. The carefully drawn 

specification document is presented to the client for checking. 

The client goes through the specification document and certifies 

it ok if all is well to him. On the other hand, if the client‘s notices 

any error, the correction must be affected before moving on to the 

next stage. 

 Planning Stage/Phase: This is the third phase of the waterfall 

model. Once the specification document has been approved by 

the client, the developers draw up the software project 

management plan (SPMP). The SPMP usually contains the 

description of what is to be done, how long it will take, how 

much it will cost, the human and computer resources that will be 

needed and a detailed timetable showing who will do what and 

when. The overall cost of the project is also made known to the 

client. If the client accepts the above specifications, the design 

begins. 

 The Design Stage/Phase: This phase consists of two steps: 

architectural and detailed designs. During the architectural 

design step, the product is broken down into modules. During the 

detailed design, each module in turn is designed. The function 



CIT432 SOFTWARE ENGINEERING II 

33 

 

 

 

 

each module is to carry out what is determined, and what 

algorithm and data structures are to be used. If any fault in the 

plan or specification document is detected, the feedback loops 

takes care of the corrections. This takes us to the implementation 

stage. 

 Implementation Stage/Phase: At this stage, each module in 

turn is coded in the particular programming language specified in 

the contract. The coded modules are then tested. While this is 

being done, if any design or specification error is detected, the 

feedback loops are followed and the fault corrected. 

 Integration Stage/Phase: At this stage, the different modules 

are brought together (linked) to form a complete system 

(product). The source code together with all documentations is 

now tested. When the developers are convinced that the software 

satisfies its specification document and that all the documentation 

is correct and complete, the software product is handed over to 

the client for acceptance testing. Once the client tests and 

certifies that the product does what it is supposed to do, he/she 

signs off the product. 

 Operation and Maintenance Stage/Phase: Once the client sign 

off the product, the product is then installed on the client‘s 

computers and it goes into operation mode. From this time on, 

any changes made to the product whether to the source code or to 

the documentation are maintenance. 

 Maintenance could be a corrective maintenance (where a fault in 

the code or documentation is detected and corrected), or an 

enhancement maintenance (maintenance that involves a change in 

the requirement). The rightmost dashed line in the figure shows 

what happens when the requirements are change and these 

changes in turn trigger changes in the specification document, 

design document, and implementation of the product. 

 

3.2.1  Advantages and Disadvantages of the Waterfall Model 
 

Advantages of the waterfall model include, among others, the following: 

 

a. It enforces a disciplined engineering approach 

b. Verification is done after each phase 

c. Documentation produced can reduce maintenance cost 

d. Feedback loops help to correct faults immediately. 

Some disadvantages of the waterfall model include: 

a. Documentation slows down the process 

b. It lacks flexibility 

c. Generate few visible sign of progress until the very end. 



CIT432 SOFTWARE ENGINEERING II 

34 

 

 

 

 

3.1.3  Where to Use the Waterfall Model 
 

Because of the strengths and the weaknesses shown above, the 

application of the waterfall model should be in situations where the 

requirements and the implementation of those requirements are very 

well understood and also when the software to be produced is large. 

For example, if a company has experience in building accounting 

systems, I/O controllers, or compilers, then building another such 

product based on the existing designs is best managed with the waterfall 

model. 

 

SELF-ASSESSMENT EXERCISE 1 
 

1. Explain what happens in the specification  phase of the waterfall 

model 

2. Outline any three strengths of the waterfall model. 

3. What is corrective maintenance? 

 

 Description of the Build-and-Fix Model 
 

Build-and-fix model is a software development model where the entire 

software products are built and delivered to the client. The client points 

out what has to be changed and changes are made until the client is 

satisfied (Stephen. 2003). The product then goes into operation mode.  

 

In the build and fix model (also referred to as an ad hoc model), the 

software is developed without any specification or design. An initial 

product is built, which is then repeatedly modified until it (software) 

satisfies the user. That is, the software is developed and delivered to the 

user. The user checks whether the desired functions ‗are present. If not, 

then the software is changed according to the needs by adding, 

modifying or deleting functions. This process goes on until the user feels 

that the software can be used productively. However, the lack of design 

requirements and repeated modifications result in loss of acceptability of 

software. Thus, software engineers are strongly discouraged from using 

this development approach. 

 



CIT432 SOFTWARE ENGINEERING II 

35 

 

 

 
 
 

This model includes the following two phases. 

 Build: In this phase, the software code is developed and passed on to the next 

phase. 

 Fix: In this phase, the code developed in the build phase is made error free. 

Also, in addition to the corrections to the code, the code is modified according 

to the user‘s requirements. 

  

 Phases  Involved  in  Build-and-Fix  Model  and  How  it Works 
 

The figure below illustrates the build-and-fix model: 

 

 

Figure 2.2: Stephen,  (2001).  Life  Cycle  Phases  of  Build-and-Fix 

Model. 

Build first

version 

Modify until

client is satisfied 

Maintenance 
Operations 



CIT432 SOFTWARE ENGINEERING II 

36 

 

 

 

 

The build-and-fix model does not follow series of stages/phases 

religiously like the waterfall model. Here, the specification phase, the 

planning phase, the design phases are all omitted. The development 

team immediately writes the code and delivers the product to the client 

who now tests it and points out things to be changed. This means that 

there is no coherent and cohesive overall structure, and maintenance 

becomes a big problem. 

 

 Advantages and Disadvantages of the Build-and-Fix 

Model 
 

Advantages include, among others, the following: 

 

a. It  provides  immediate  feedback  to  developers:  This  shows 

immediate signs of progress 

b. Removes planning/design/documentation overhead. 

 

Disadvantages 

 

a. Much time is spent debugging 

b. Does not promote documentation and therefore produced 

software is costlier to maintain 

c. Design changes cost much more after coding has started 
After the sequences of changes, the codes structure becomes so messy 

that subsequent corrections become harder to apply and results become 

less reliable. 

 

 When to Use the Build-and-Fix Model 
 

The build-and-fix model should be used when the product is small and 

there is no possibility of the product ever having to be maintained in the 

future. For example, if a student is to write a 25-50 line home work 

problem to solve a particular computational need (e.g. program to keep 

track of student‘s record in the class), then it would be a waste of time to 

specify, plan and design the development effort. 

 

SELF-ASSESSMENT EXERCISE 2 
 

1. When is it most appropriate to apply the build-and-fix model? 

2. The build-and-fix model does not follow the series of stage like 

the waterfall model. TRUE or FALSE 

3. Why is maintenance a big problem with the build-and-fix model 

approach? 



CIT432 SOFTWARE ENGINEERING II 

37 

 

 

 

 

4.0 CONCLUSION 
 

Two life cycle models were discussed in this unit, namely; waterfall and 

the build-and-fix models. The waterfall model was shown to be a very 

good model that brings about success in most software development 

effort. This success was attributed to the fact that waterfall is document 

based and follows engineering process rigidly. The build-and-fix model 

should almost never to be used, because changing a product in operation 

mode costs is much. However, both waterfall and build-and fix models 

has a number of advantages as well as some disadvantages. 

 

7.0 SUMMARY 

There  were  several  issues  discussed  in  this  unit  which  can  be 

summarised as follows: 
 

 the waterfall model was derived from engineering model and as 

such series of stages starting from the requirement phase down to 

operation and maintenance phase 

 the waterfall model creates room for feedback at every phase. 

this gives room for error corrections 

 the application of the waterfall model should be in situations 

where the requirements and the implementation are very well 

understood and also when the software to be produced is large 

There are several advantages of the waterfall model 

 The build-and-fix model does not follow series of phases; rather 

it is an approach where the entire software product is built and 

delivers to the clients who points out changes to be made 

 The build-and-fix model should be used when the product is 

small and there is no possibility of the product ever having to be 

maintained in the future. 

 

8.0 TUTOR-MARKED ASSIGNMENT 
 

1. Explain the need for the feedback loops in the waterfall model. 
2. The term ―operation mode‖ and ―maintenance phase‖ both refer 

to the time period after software have been delivered to the client. 

What is the essential difference between the two terms? 

3. Describe the sort of product that you feel that will be an ideal 

application for the waterfall model. 
4. Why is the build-and-fix model not appropriate for building large 

software product? 

5. List and explain any three disadvantages of the waterfall model 

6. What is the major risk in using the waterfall model? How can this 

risk be resolved? 



CIT432 SOFTWARE ENGINEERING II 

38 

 

 

 

 

7.0 REFERENCES/FURTHER READING 
 

Boehm, B. (1987). A Spiral Model of Software Development and 

Enhancement, Computer, 20(9), 61- 72. 

 

Chatters, B.W.; Lehman, M.M.; Ramil, J.F. & Werwick, P. (1987). 

Modeling a Software Evolution Process: A Long-Term Case 

Study, Software Process-Improvement and Practice, 5(2-3), 91- 

102, 2000. 4, 5, 19-25. 

 

Garg, P.K.; Mi, P.; Pham, T.; Scacchi, W. & Thunquest, G. (1994). The 

SMART Approach for Software Process Engineering, Proc. 16th. 

Intern. Conf. Software Engineering, 341 - 345. 

 

Mili, A.; Desharnais, J. & Gagne, J.R. (1986). Formal Models of 

Stepwise Refinement of Programs, ACM Computing Surveys, 18, 

3, 231-276. 

 

Mills, H.D.; Dyer,  M. & Linger,  R.C. (1970).  Cleanroom Software 

Engineering, IEEE Software, Royce, W. W. (Ed.). Managing the 

Development of Large Software Systems, Proc. 9th. Intern. Conf. 

of Software Engineering, ,IEEE Computer Society, 1987 ,328- 

338 Originally published in Proc.WESCON. 

 

Moore, J.W.; DeWeese, P.R. & Rilling, D. (1997). "U. S. Software Life 

Cycle Process Standards," Crosstalk: The DoD Journal of 

Software Engineering, 10:7, July. 

 

Neighbors, J. (1984). The Draco Approach to Constructing Software 

from Reusable Components, IEEE Trans. Software Engineering, 

10, 5, 564-574. 

 

Sajan, M. (2007). Software Engineering (Rev. ed.). New Delhi: S. 

Chand & Company Ltd., pp. 1-5, 27-36, 138-141, 152-158, 2881- 

187. 

 

Scacchi, W. (1984). Managing Software Engineering Projects: A Social 

Analysis, IEEE Trans. Software Engineering, SE-10, 1, 49-59, 

January. 

 

Stephen, S. (2001). Software Engineering. ISBN-0-256-LL454-4. 



CIT432 SOFTWARE ENGINEERING II 

39 

 

 

 

 

UNIT 3 THE PROTOTYPING MODEL AND THE 

SPIRAL MODEL 
 

CONTENTS 
 

1.0     Introduction 

2.0     Objectives 

 Main Content 

 Description of  Prototyping Model 

 Phases Involved in Rapid Prototyping and How it Works 

 Advantages and Disadvantages of the Rapid 

Prototyping l Model 

 Where to Use the Rapid Prototyping 

 Description of the Spiral Model 

 Phases Involved in Spiral Model and how it Works 

 Advantages and Disadvantages of Spiral Model 

 When to Use the Spiral Model 

4.0     Conclusion 

5.0     Summary 

6.0     Tutor-Marked Assignment 

7.0     References/Further Reading 

 

1.0   INTRODUCTION 
 

In unit one, we discussed two important software engineering 

development models; the build-and-fix and the waterfall models. You 

learnt that it was imperative to have software engineering model which 

serves as an outline for developing good, functional and maintainable 

software. In this unit, we shall examine another two important software 

engineering models: the prototyping model and the spiral model. In 

this unit, we shall consider basically the waterfall model and the 

code-and-fix model. The prototyping model is a model where 

software developers after gathering information in requirement process, 

builds a reduced version of the product in question to enable them gather 

the real and exact need of the customer. The spiral model on the other 

hand, is a model that emphasizes risk analysis at every stage of the 

development process. Basic features of these two software engineering 

models shall be discussed in details in this unit. All the issues discussed 

were presented in a simple and clear manner. 



CIT432 SOFTWARE ENGINEERING II 

40 

 

 

 

 

2.0    OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 describe the prototype model and its types 

 discuss the basic features of the rapid prototyping model 

 explain when to use the rapid prototyping model 

 describe the spiral model and all the phases involved in it 

 explain when it is best to use the spiral model 

 discuss the advantages and disadvantages of the spiral model. 

 

 MAIN CONTENT 
 

Prototyping Model 

 

The prototyping model is a systems development method in which a prototype 

is built, tested and then reworked as necessary until an acceptable outcome is 

achieved from which the complete system or product can be developed. This 
model works best in scenarios where not all of the project requirements 
are known in detail ahead of time. It is an iterative, trial-and-error 
process that takes place between the developers and the users.  

Steps of the prototyping model 

In most cases, the steps of the prototyping model are as follows: 

1. The new system requirements are defined in as much detail as possible. This 

usually involves interviewing a number of users representing all the departments 

or aspects of the existing system. 

2. A preliminary, simple design is created for the new system. 

3. A first prototype of the new system is constructed from the preliminary design. 

This is usually a scaled-down system, and represents an approximation of the 

characteristics of the final product. 

4. The users thoroughly evaluate the first prototype and note its strengths and 

weaknesses, what needs to be added and what should to be removed. The 

developer collects and analyzes the remarks from the users. 

5. The first prototype is modified, based on the comments supplied by the users, and 

a second prototype of the new system is constructed. 

6. The second prototype is evaluated in the same manner as was the first prototype. 

7. The preceding steps are iterated as many times as necessary, until the users are 

satisfied that the prototype represents the final product desired. 

8. The final system is constructed, based on the final prototype. 

 

https://searcherp.techtarget.com/definition/prototype


CIT432 SOFTWARE ENGINEERING II 

41 

 

 

9. The final system is thoroughly evaluated and tested. Routine maintenance is 

carried out on a continuing basis to prevent large-scale failures and to minimize 

downtime. 

Types of prototype models 

There are a few types of prototype models that can be implemented by development 

teams based on their needs: 

 Rapid throwaway- This method involves exploring ideas by quickly developing a 

prototype based on preliminary requirements that is then revised through 

customer feedback. The name rapid throwaway refers to the fact that each 

prototype is completely discarded and may not be a part of the final product. 

 Evolutionary- This approach uses a continuous, working prototype that is refined 

after each iteration of customer feedback. Because each prototype is not started 

from scratch, this method saves time and effort. 

 Incremental- This technique breaks the concept for the final product into smaller 

pieces, and prototypes are created for each one. In the end, these prototypes are 

merged into the final product. 

 Extreme- This prototype model is used specifically for web development. All web 

prototypes are built in an HTML format with a services layer and are then 

integrated into the final product. 

Advantages of the prototyping model 

Using a prototype model can bring multiple advantages, including: 

 Customers get a say in the product early on, increasing customer satisfaction. 

 Missing functionality and errors are detected easily. 

 Prototypes can be reused in future, more complicated projects. 

 It emphasizes team communication and flexible design practices. 

 Users have a better understanding of how the product works. 

 Quicker customer feedback provides a better idea of customer needs. 

Disadvantages of the prototyping model 

The main disadvantage of this methodology is that it is more costly in terms of time 

and money when compared to alternative development methods, such as the spiral or 

waterfall model. Since in most cases the prototype is discarded, some companies 

may not see the value in taking this approach. 

 

 

 

https://whatis.techtarget.com/definition/uptime-and-downtime
https://www.theserverside.com/definition/HTML-Hypertext-Markup-Language
https://whatis.techtarget.com/definition/customer-satisfaction-CSAT
https://searchsoftwarequality.techtarget.com/definition/spiral-model
https://searchsoftwarequality.techtarget.com/definition/waterfall-model


CIT432 SOFTWARE ENGINEERING II 

42 

 

 

Prototyping Model Phases 

 

  

 Description of Rapid Prototyping Model 
 

Rapid prototyping model is a type of model where the development 

team gathers information as in waterfall model, and presents their 

findings in form of a document to the client. After this, they proceed to 

build a rapid prototype. A prototype is a reduced functionality or a 

limited performance version of a software system. The key points are to 

build code rapidly that will show the client the inputs and the outputs in 

order for the client to say either, ―yes that‘s exactly what I want‖ or ―No 

what I really want is something else.‖ 

 

 Phases Involved in Rapid Prototyping and how it Works 
 

The phases involved in the rapid prototyping model are similar to that of 

waterfall model but they are not the same. In rapid prototyping model, 

the phases start with ―rapid prototype‖. What happens is that the 

requirement team gathers information as before and presents their 

findings in form of a document to the client. After presenting their 

finding to the client, they proceed to build a rapid prototype. The 

prototype is built as quickly as possible to speed up the software 

development process. The sole purpose of the prototype is to capture 

the client‘s need; once this has been determined, the rapid prototype is 

effectively discarded. The development team uses information captured 

from the client to draw up the specification document. From here, the 

process continues as it is in the waterfall model. Another difference in 

the rapid prototyping model is that the feedback loop is missing. This is 

because the rapid prototype built is normally used to capture all the 

errors/faults to be corrected. 

https://www.guru99.com/images/1/051719_0618_Prototyping1.png


CIT432 SOFTWARE ENGINEERING II 

43 

 

 

 

 

The rapid prototyping model can therefore be represented as shown in 

Figure 3.1below: 
 

 

 

Figure 3.1: Stephen, (2001). Life Cycle Phases of Rapid Prototyping 

Model 
 

 
Rapid prototype model is used to overcome issues related to 

understanding and capturing of user‘s  requirements.  An  essential 

aspect of rapid prototype is embedded in the word ―rapid‖. The 

developer should endeavour to construct the prototype as quickly as 

possible to speed up the software development process. 

Changed Requirements Rapid prototype 

Verify Verify 

Specification 

Verify 

Planning 

Verify 

Design 

Verify 

Implementation 

Test 

Integration 

Test 

Development Operations & maintenance 

Maintenance 



CIT432 SOFTWARE ENGINEERING II 

40 

 

 

 

 

 Advantages and Disadvantages of the Rapid Prototyping 

Model 
 

Advantages include 
 

a. developers can benefit from the experience gained from building 

the prototype and apply this experience towards building a better 

product 

b. gathers client‘s feedback early in the process to avoid costly re- 

design later 

c. early functionality 

d. provides a process to perfect the requirements definition. 

e. provides risk control 

f. documentation focuses on the end product not the evolution of 

the product. 

 

Disadvantages include 

 

a. adding the rapid prototype will lengthen the requirements phase 
b. depending on the type of software system, it may not be possible 

to build a meaningful prototype without considerable effort 

c. less applicable to existing  systems than to new, original 

development. 

 

 When to Use the Rapid Prototyping Model 
 

Rapid Prototyping model is very useful to demonstrate technical 

feasibility when the technical risk is high. It can also be used to better 

understand and extract user requirements. In either case, the goal is to 

limit cost by understanding the problem before committing more 

resources. Prototyping can always be used with the analysis and design 

portions of objected-oriented model. 

 

 Description of the Spiral Model 
  

This model of development combines the features of the prototyping model and the 

waterfall model. The spiral model has four phases: Planning, Risk Analysis, 

Prototype Creation/Engineering and Evaluation. A software project repeatedly 

passes through these phases in iterations (called Spirals in this model). The baseline 

spiral, starting in the planning phase, requirements are gathered and risk is 

assessed. Each subsequent spirals builds on the baseline spiral. 

 

 

 

 



CIT432 SOFTWARE ENGINEERING II 

45 

 

 

 

 

 
 

The spiral model of software development and evolution represents a 

risk-driven approach to software process analysis and structuring 

(Boehm, 1987; Boehm et al., 1998). The main objective here is to 

determine the risks involved in developing a particular software and 

then to resolve each risk in turn. For example, a typical risk is that the 

delivered software may not satisfy the client‘s real needs. This type of 

risk can be taken care of by building a rapid prototype and have the 

client experiment on it. A project is terminated if at any time it becomes 

clear that the product to be built will not be cost effective. The spiral 

model uses the best waterfall model and the rapid prototyping model. 



CIT432 SOFTWARE ENGINEERING II 

42 

 

 

 

 

 Phases involved in Spiral Model and How it Works 
 

The spiral model‘s development is divided into four quadrants; 

planning, risk analysis, engineering, and client evaluation quadrants. 

Starting at the planning quadrant (innermost quadrant), you move 

clockwise direction through the quadrants spiraling outwards until you 

have completed a final product. At each interaction cycle, a 

progressively more complete version of the prototype is built. At each 

client evaluation, the engineering work is evaluated and suggestions for 

modifications are made. The project is terminated if at risk analysis, it is 

determined that the risks are too much. The figure below illustrates the 

spiral model. 
 

 

 

 

Figure 3.2: Boehm, (1987). The Spiral Model Diagram 



CIT432 SOFTWARE ENGINEERING II 

43 

 

 

 

 

This approach, developed by Barry Boehm, incorporates elements of 

specification-driven, prototype-driven process methods, together with 

the classic software life cycle. 

 

System development in this model therefore spirals out only so far as 

needed according to the risk that must be managed. Risk analysis, which 

seeks to identify situations that might cause a development effort to fail 

or go over budget/schedule, occurs during each spiral cycle. In each 

cycle, it represents roughly the same amount of angular displacement, 

while the displaced sweep volume denotes increasing levels of effort 

required for risk analysis. 

 

3.2.3  Advantages and Disadvantages of Spiral Model 
 

Advantages include: 

 

a. spiral  model  combines  the  best  features  of  the  waterfall  and 

prototyping models 

b. it address risks associated with software development 

c. it enables the developer to apply prototyping at any stage in the 

evolution of the software product 

d. it control costs and risk through prototyping 

e. allows for work force specialisation 

f. facilitates allocation of resources 

g. does not require a complete set of requirements at the onset. 

Disadvantages include: 

a. the overall cost is comparatively high 

b. it is complicated 

c. it is unstable for small projects were risks are modest 

d. requires considerable risk assessment expertise 

 

 When to Use the Spiral Model 
 

Spiral model is particularly useful in ADE (Aerospace, Defense and 

Engineering) projects, because they are risky in nature. They tend to use 

mature technology and to work well-known problems. Spiral model is 

also applicable to many business applications, especially those for which 

success is not guaranteed or the applications require much computation, 

such as in decision support systems. 



CIT432 SOFTWARE ENGINEERING II 

44 

 

 

 

 

SELF-ASSESSMENT EXERCISE 
 

1. List the four quadrants of the spiral model. 

2. What does the word ―spiral‖ connotes in this model. 
3. If after the risk analysis of any stage, it is determined that the 

risks are too much, what happens? 

 

4.0 CONCLUSION 
 

This unit highlights another two software engineering development 

models, namely; the rapid prototyping and the spiral models. The rapid 

prototyping model ensures that the delivered product satisfies the 

client‘s real needs. This is because the model gives client room to 

interact with an implementation of a portion of the functionality of the 

intended product. The spiral model was also discussed. The spiral model 

is a risk-driven model. A proper risk analysis is carried out at every 

stage of the development process and the project terminated at any time 

the risk discovered seems to be too much. The spiral model is made up 

of four quadrants and a new prototype is built at each quadrant to access 

the clients view. When to use the rapid prototype as well as when to use 

the spiral models in software developments were also discussed. 

 

6.0 SUMMARY 
 

In this unit, you have learnt that: 

 
 a prototype is a reduced functionality version of the product in 

question 

 the sole purpose of the prototype is to capture the client‘s need 

 the rapid prototyping model makes up for some shortcomings of 

the waterfall model 

 rapid prototyping model is very useful to demonstrate technical 

feasibility when the technical risk is high 

 rapid prototyping has many strengths as well as some 

weaknesses 

 the spiral model makes room for proper risk analysis at every 

stage of the process development 

 a prototype is built at every four quadrants of the spiral model 

 spiral model is particularly useful in ADE (Aerospace, Defense 

and Engineering) projects, because they are risky in nature. 



CIT432 SOFTWARE ENGINEERING II 

45 

 

 

 

 

7.0 TUTOR-MARKED ASSIGNMENT 
 

1. Explain why you think a new prototype is necessary at every 

quadrant of the spiral model. 

2. What is meant by ―risk analysis?‖ 
3. Why is the rapid prototyping model probably not being 

employed? 

4. When should developers use the spiral model 

5. Explain the four quadrants of the spiral model. 

 

7.0 REFERENCES/FURTHER READING 
 

Boehm, B. (1987). A Spiral Model of Software Development and 

Enhancement, Computer, 20(9), 61- 72. 

 

Boehm, B. W. (1981). Software Engineering Economics. New Jersey, 

Englewood Cliffs: Prentice-Hall, pp. 20. 

 

Boehm, B.; Egyed, A.; Kwan, J.; Port, D.; Shah, A. & Madachy, R. 

(1998). Using the WinWin Spiral Model: A Case Study. 

Computer, 31(7), 33-44. 

 

Chatters, B.W.; Lehman, M.M.; Ramil, J.F. & Werwick, P. (1987). 

Modeling a Software Evolution Process: A Long-Term Case 

Study, Software Process-Improvement and Practice, 5(2-3), 91- 

102, 2000. 4, 5, 19-25. 

 

Garg, P.K.; Mi, P.; Pham, T.; Scacchi, W. & Thunquest, G. (1994). The 

SMART Approach for Software Process Engineering, Proc. 16th. 

Intern. Conf. Software Engineering, 341 - 345. 

 

Moore, J.W.; DeWeese, P.R. & Rilling, D. (1997). "U. S. Software Life 

Cycle Process Standards". Crosstalk: The DoD Journal of 

Software Engineering, 10:7. 

 

Mili, A.; Desharnais, J. & Gagne, J.R. (1986). Formal Models of 

Stepwise Refinement of Programs, ACM Computing Surveys, 18, 

3, 231-276. 

 

Mills, H.D.; Dyer, M. & Linger, R.C. (1987). Cleanroom Software 

Engineering, IEEE Software, Royce, W. W., Managing the 

Development of Large Software Systems, Proc. 9th. Intern. Conf. 

of Software Engineering, IEEE Computer Society. pp.328-338 

Originally published in Proc.WESCON, 1970. 



CIT432 SOFTWARE ENGINEERING II 

46 

 

 

 

 

Neighbors, J. (1984). The Draco Approach to Constructing Software 

from Reusable Components, IEEE Trans. Software Engineering, 

10, 5, 564-574. 

 

Sajan, M. Software Engineering (Rev. ed.). New Delhi: S. Chand & 

Company Ltd., pp. 1-5, 27-36, 138-141, 152-158, 2881-187. 



CIT432 SOFTWARE ENGINEERING II 

47 

 

 

 

 

MODULE 3 SOFTWARE DEVELOPMENT LIFE 

CYCLE (SDLC) 
 

Unit 1 Overview of the Process Involved  

Unit 2 Systems Analysis and Software Requirement 
 Specification  

Unit 3 Software Coding and Testing  

 

 

UNIT 1       OVERVIEW OF THE PROCESS INVOLVED 
 

CONTENTS 
 

1.0     Introduction 

2.0     Objectives 

 Main Content 

 Software Project Management 

 Initial Problem Statement 

 Feasibility Study 

 Requirement Analysis 

 Software Maintenance 

 Software Project Construction 

 System Analysis and Specification 

 Software Design 

 Coding 

 Software Quality Assurance 

 Testing and Integration 

 Software Conversion 

 Abrupt Conversion 

 Parallel Conversion 

 Staged Conversion 

 Location Conversion 

 Software Documentation 

3.3 The Importance of having a Standard 

4.0     Conclusion 

5.0     Summary 

6.0     Tutor-Marked Assignment 

7.0     References/Further Reading 

 

 INTRODUCTION 
 

Software refers to the aggregates of computer programs and the 

appropriate data needed for their operations with proper documentation. 

Software are instructions that tell a computer what to do. Development 

of good, functional and maintainable software does not evolve from 

harp-hazard activities. Software developers usually employ a well 

defined algorithm in order to produce standard software.  In this 



CIT432 SOFTWARE ENGINEERING II 

48 

 

 

 

 

unit, we shall take an overview of the systematic procedure involved in 

software development. This step-by-step affair that cuts across many 

activity stages of software development is what is known as Software 

Development Life Cycle (SDLC). Some calls it ―system life cycle‖ 

while others simply refer to it as phases in software development. 

Though the exact terminology varies from reference to reference, the 

essential concepts remain the same. 

 

2.0    OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain what is SDLC 

 identify all the stages involved in software development: 

planning, construction and maintenance. 

 list  the  basic  factors  that  must  be  considered 

development 

in  software 

 explain the importance of having  a standard 

development 

in software 

 explain the importance of software testing.  

3.0 MAIN CONTENT 
 

3.1 Software Project Management 
 

 

Software project management is the set of activities involved in 

planning, controlling and directing the software project. Before any 

software development team or organization will be able to develop 

workable software, the first thing to do is to make a comprehensive plan 

of the software project before the actual construction. In most 

situations, new feasible systems replace or supplement existing 

information processing mechanisms whether they were previously 

automated, manual, or informal. This section looks at some of the basic 

issues in software project planning. 

 

 Initial Problem Statement 
 

―Necessity is the mother of invention‖. There should be a clear 

computational need that will necessitate the development of software. 

The initial problem statement specifies in definite terms the 

computational need at hand. It normally gives a clear picture of what the 

physical system is. A proper survey of the existing system is usually 

done to enable an organization identify clearly the coverage of the new 

system and hence ensure a well articulated organizational need. 



CIT432 SOFTWARE ENGINEERING II 

49 

 

 

 

 

 Feasibility Study 
 

The next step in planning is feasibility study. This is a detailed analysis 

of the whole problem area specified in the initial problem statement. 

The feasibility study seeks to determine whether the  computational 

effort envisaged is feasible (possible). The feasibility study ensures that 

the project is possible in terms of budget, expertise, and technology. 

 

 Budget: The budget aspect seeks to find out if there are financial 

constraints that will make the realisation of the software project 

impossible. It extends to examining an estimate of the overall 

cost of the project 

 Expertise: The expertise aspect of the feasibility study deals with 

the technical know-how needed to make the project feasible. It 

seeks to answer the questions such as; are there some experts who 

specialise in that area? 

 Technology: The technology aspect of the feasibility study 

examines the enabling technology that will make the realisation 

of the software project feasible (possible). You need to check for 

example, if there are programming languages available that can 

be used to develop such software project etc. 

 

Other issues like policy statements of the firm or of the government that 

may make such computerisation effort difficult or impossible are also 

taken into considerations during the feasibility study. 

 

 Requirement Analysis 
 

Requirement analysis is the stage when the things that are required 

(needed) to make the software project a success are identified. 

Requirement analysis identifies the problems the new software is 

expected to solve. It also explores the new system‘s capabilities, its 

desired performance characteristics and the resource infrastructure 

needed to support system operation and maintenance. According to 

Inyiama H. & Alo U (2009), requirement analysis entails for example, 

knowing whether personal computers should be used or if the situation 

requires minicomputers. If personal computers are to be used, will there 

exist as standalone computers? Or is networking required and what 

network topology will be preferred? The requirement analysis helps to 

clarify the overall requirement of the project. The requirement analysis 

report provides the basis for the next stage in the development. 



CIT432 SOFTWARE ENGINEERING II 

50 

 

 

 

 

 Software Maintenance 
 

Another phase in software project management is software maintenance.   

Any addition, correction, or subtraction made to software after delivery 

is tagged maintenance. Maintenance in real sense, deals with adjusting 

the installed packages to cope with on-going changes in content and 

environment. Maintenance helps to sustain the useful operation of a 

system in its host/target environment by providing requested functional 

enhancement repairs, performance, improvement and conversions. Its 

main purpose is to modify and update software application after delivery 

to correct faults and to improve performance. 

 

There are four types of maintenance, namely, corrective, adaptive, 

perfective, and preventive. Corrective maintenance is concerned with 

fixing errors that are observed when the software is in use. Adaptive 

maintenance is concerned with the change in the software that takes 

place to make the software adaptable to new environment such as to run 

the software on a new operating system. Perfective maintenance is 

concerned with the change in the software that occurs while adding new 

functionalities in the software. Preventive maintenance involves 

implementing changes to prevent the occurrence of errors. 

 

SELF-ASSESSMENT EXERCISE 1 
 

1. Why is feasibility study very important in any project 

development? 

2. What does the initial problem statement specify? 

3. Explain software maintenance in your own understanding. 

 

 Software Project Construction 
 

The construction activities are activities that are directly related to the 

development of software. Such activities include, among others, 

systems analysis, specification, design, coding, testing, integration etc. 

 

 System Analysis and Specification 
 

System analysis is a problem-solving method that involves looking at 

the wider system, breaking apart the parts, and figuring out how it works 

in order to achieve a particular goal. It is the evaluation of an activity to 

identify its desired objectives and determine procedures for efficiently 

attaining them. System analysis can also be defined as the detailed study 

of a system to uncover its bottlenecks. System analysis involves so 

many practical steps which include, among others, data gathering, 

input form design, database file, data flow diagram design etc. In 

subsequent unit, we shall discus in details some of these practical 

steps. In line with these practical steps, system specification is drawn. 

System specification gives detailed description of what the system 

https://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system


CIT432 SOFTWARE ENGINEERING II 

51 

 

 

should look like, in terms of function, required effect and technology. 

This detailed description serves as a basis for design of the new 

system according to the data produced from the above analysis. 

 

 System Design 
 

Based on the specification drawn above, system design describes an 

overview of the new system in terms of interface, structure and 

technology (Sajan, 2003). System design depicts the program logic. In 

most cases, false codes popularly known as pseudo codes are used to 

specify and explain the program logic contained in the specification. It 

is at this stage that projects are normally broken down into subsystems 

and modules. The mechanism to transfer control from one subsystem to 

another is also spelt out. Various techniques employed in system design 

were discussed in software engineering 1. 

 

 Software Coding 
 

Software coding implies translating the design made in 3.2.2 above to a 

computer understandable format using a particular programming 

language. It should be noted that whereas design is done without making 

use of any particular programming language, coding is done with a 

particular high level programming language specified in the contract. 

The actual programming must follow a structured programming 

constructs to arrive at functional maintainable software. Some of these 

programming constructs shall be discussed in subsequent units. 

 

SELF-ASSESSMENT EXERCISE 2 
 

What question(s) does systems analysis seeks to answer? 

 

 Software Installation and Management 
 

Once system test has been carried out and the system certified ok, 

preparation begins to place the new system into operation using the 

design specifications to the new system. This section presents different 

ways of changing over from the old system to the newly developed 

system. 

 

 Software Testing and Integration 
 

Before deployment and commissioning of new developed system, a test 

run of the system is carried out to remove errors (bugs). Each of the 

modules is tested. The subsystems in turn are also tested. After the 

module and subsystem testing, the individual components are integrated 

(linked) to form one complete system and a system test carried on it. 

Software testing and integration affirms and sustains the overall integrity 

of the software, architectural configuration through verifying the 

consistency and completeness of implemented modules. It also verifies 



CIT432 SOFTWARE ENGINEERING II 

52 

 

 

the resource interface and interconnections against their specifications 

and validates the performance of the system against its requirements. 

 

The software codes produced in software coding are tested in a planned 

way. Typically, a test plan is drawn and test data used to carry out the 

test following the test plan. 

 

NOTE: A test plan must be comprehensive and must be drawn from the 

beginning of the project.  It should also be noted that unit test is first 

carried out. This is when the component units/modules are individually 

tested with a prepared set of test data and all bugs corrected. After this 

unit test, system test is carried out. System test is a test on the integrated 

(complete) system using actual data (main data the software is built to 

handle). 

 

 Software Conversion 
 

Conversion is simply a change over from the manual or less automated 

existing system to the newly developed system. It is however expedient 

to employ a systematic change over from the old process to the newly 

automated process. Conversion strategies commonly used in installation 

include among others the following. 

 

 Abrupt Conversion (Cut-Over) / Direct Changeover 
 

This is a conversion strategy where on a specific date chosen, the old 

system is terminated and the new system is placed into operation 

(Jeffery et al., 2001). This approach of software conversion may be a 

high risk approach since there may still be major problems that will 

not be discovered until the new system has been in operation for some 

time. 

 

 Parallel Conversion 
 

Here, both the old and the new system are operated simultaneously for 

some time period (Jeffery et al., 2001). This approach ensures that all 

major problems in the new system are discovered and solved before the 

old system is discarded. The final cut-over may be either abrupt or 

gradual as portions of the new system are deemed adequate. 

 

 Phased / Staged Conversion 
 

This is the type of conversion based on the version concept (Jeffery et 

al., 2001). Here, each successive version of the new system is converted 

as it is developed. It is the implementation of the new system in 

modules or stages of phased operations.  For example one might 

implement the new system by starting with the sales sub-system 

followed by the inventory control subsystem and finally the purchases 

sub-system. The conversion of each version may be direct, parallel 



CIT432 SOFTWARE ENGINEERING II 

53 

 

 

or location. 

 

 Pilot / Location Conversion 
 

This type of conversion applies when the same system will be used in 

many different geographical areas. The method involves the 

implementation of the new system at a selected 

location/department/division within the organisation. It is mainly used 

by large organisations that have multiple locations or largely 

independent departments. The division or department that uses the 

system first is called the Pilot Site. The old system continues to operate 

within the entire organisation including the pilot site and if the system  

proves to be successful at the pilot site, it is implemented to the rest of 

the organisation. 

 The cut- over now may be abrupt since other sites have certified the 

newly built product ok. 
 
 

 Software Documentations 
 

Documentation is done at each stage of the software development life 

cycle. However, at this stage, one thinks in terms of committing the 

entire documentation into an automated database for future reference. 

 

Documentation details development descriptions and user guides, all in 

form suitable for dissemination and system support. These 

documentations characterise what the developed system is supposed to 

do, how it does it, how it was developed, how it was put together, 

validated and how to install use and maintain it. Software 

documentations are often a primary medium for communication 

between developers, users, maintainers; thus each of these group can 

benefit from automated mechanism that allow them to browse, query, 

retrieve and selectively print out documents (Garg & Scacchi 

1989;1990). 

 

 The Need for a Standard 
 

Each of the stages discussed above requires a professional standard 

document in which the correct way of doing it is clearly specified. 

Having established a professional stand, a quality control group is 

always set up to ensure that the standards are been maintained and 

followed. Establishment of a professional standard document helps to 

ensure that every work done in the computing world/environment meets 

up with the quality standard. Again, since any member of the software 

development team may be sacked,  retire,  cease to function for any 

reason or even die. It will be difficult for anyone else to understand 

what he/she has done so far or continue where he stopped if there is no 

standard.  Hence, it is expedient to discuss the issue of standards before 

a software contract is signed. One should cause the contractor to adopt 



CIT432 SOFTWARE ENGINEERING II 

54 

 

 

your own standard if possible. 

 

SELF-ASSESSMENT EXERCISE 3 
 

1. Differentiate between unit testing and system testing. 

2. What should be the coverage areas of software documentation? 

 

 CONCLUSION 
 

Software development life cycle (SDLC) means the different phases 

involved in developing good, functional, maintainable software. You 

learnt that the three supportive activities involved in the software 

development life cycle are: software management, software 

construction, and software quality assurance. The management aspect 

of software development includes set of activities involved in planning, 

controlling and directing software project. Furthermore, you learned 

that software construction involves all activities that analyse 

requirements, develops design, writes code and structures databases. On 

the other hand, you were made to understand that software quality 

assurance involves activities such as software testing and integration, 

software conversion, documentation etc. that make sure the management 

and construction efforts put forth result in a product that meets all of its 

requirements. We also have shown why it is expedient to have a 

standard guiding each of these phases of software development. 

 

5.0 SUMMARY 
 

In this unit, you have learnt that: 

 
 software development life cycle can be divided into three: 

management, construction and quality assurance 

 feasibility study seeks to determine whether computerisation 

effort is possible in terms of budget, expertise and technology 

 the requirement analysis is a stage when all that needed to make 

the project a success are analysed 

 system analysis seeks to understand the technical details involved 

in the process with the scope of computerisation 

 specification document gives a detailed description of what the 

system should look like in terms of function, effect and 

technology 

 software design describes an overview of the new system in 

terms of interface, structure and technology 

 coding is the act of translating the design into a computer 

understandable format using a particular programming language 

 testing implies test-running the newly developed software 

product to check if it meets the targeted functions while 

integration deals with linking the different modules and 

subsystems to form one entity 

 software conversion means changing over from the already 



CIT432 SOFTWARE ENGINEERING II 

55 

 

 

existing manual or less automated system to the newly developed 

software 

 maintenance is an addition or subtraction made to the software 

product after delivery 

 there is a need to have a common stand (standard) in software 

development process. 

 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1(a) Explain software conversion. 

(b) Explain the different types of software conversion giving vivid 

example(s) on each of the conversion types. 

 

2. Why is there need for systematic approach in the development of 

software project? 

3. Where there are no standard, what happens? 

4. Explain the three basic aspect of the feasibility study. Find out 

some other aspects that are also part of the feasibility study. 

5. Why is it necessary to plan a software project before its 

construction. 
6. In your own words, explain any three phase in software 

development life cycle. 

 

7.0 REFERENCES/FURTHER READING 
 

Boehm, B. (1987). A Spiral Model of Software Development and 

Enhancement, Computer, 20(9), 61- 72. 

 

Boehm, B. W. (1981). Software Engineering Economics. Englewood 

Cliffs, New Jersey: 20. 

 

Boehm, B.; Egyed, A.; Kwan, J. & Port, D.; et al. (1998). Using the 

WinWin Spiral Model: A Case Study. Computer, 31(7), 33-44. 

 

Chatters, B.W.; Lehman, M.M.; Ramil, J.F. & Werwick, P. Modeling a 

Software Evolution Process: A Long-Term Case Study. Software 

Process-Improvement and Practice, 5(2-3), 91-102, 2000. 4, 5, 

19-25, 1987. 

 

Garg, P.K.; P. Mi; Pham, T.; Scacchi, W. & Thunquest, G. The 

SMART Approach for Software Process Engineering, Proc. 16th. 

Intern. Conf. Software Engineering, 341 - 345, 1994. 

 

Jeffery, L.; et al. (2001). System Analysis and Design Methods (5th ed.). 

McGraw-Hill Higher Education, pp. 163-210. 

 

Mili, A.; Desharnais, J. & Gagne, J.R. Formal Models of Stepwise 

Refinement of Programs, ACM Computing Surveys, 18, 3, 231- 



CIT432 SOFTWARE ENGINEERING II 

56 

 

 

276, 1986. 

 

Mills, H.D.; Dyer M. & Linger,  R.C.  Cleanroom  Software 

Engineering, IEEE Software, Royce, W. W., Managing the 

Development of Large Software Systems, Proc. 9th. Intern. 

Conf.of Software Engineering, IEEE Computer Society, 1987, 

328-338 Originally published in Proc.WESCON, 1970. 

 

Moore, J.W.; De-Weese, P.R. & Rilling, D. "U. S. Software Life Cycle 

Process Standards," Crosstalk: The DoD Journal of Software 

Engineering, 10:7, July 1997. 

 

Sajan, M. (2007). Software Engineering (Rev. ed.). Ram Naga, New 

Delhi: S. Chand & Company Ltd.,  pp. 1-5, 27-36, 138-141, 152- 

158, 2881-187. 

 

Stephen, S. (2001). Software Engineering. ISBN-0-256-LL454-4. 



CIT432 SOFTWARE ENGINEERING II 

57 

 

 

 

 

UNIT 2 SYSTEMS ANALYSIS AND SOFTWARE 

REQUIREMENT SPECIFICATION 
 

CONTENTS 
 

1.0     Introduction 

2.0     Objectives 

5.0     Main Content 

 Data Collection 

 Questionnaire Method 

 Free-Format Questionnaires 

 Fixed-Format Questionnaires 

 Multiple Choice Questionnaires 

 Existing Document Method 

 On-Site Observation Method 

 Interview Method 

 Work Sampling Method 

 Survey Method 

 System Design 

 Form Design 

 Database Design 

 Data Flow Diagram 

 Software Requirement Specification (SRS) 

 Four Major Goals of a Good SRS 

 What you should know about SRS 

4.0     Conclusion 

5.0     Summary 

6.0     Tutor-Marked Assignment 

7.0     References/Further Reading 

 

 INTRODUCTION 
 

In unit 1, you learnt an overview of software development life cycle 

(SDLC). In this unit, you will learn how to carry out a practical system 

analysis. System analysis deals with the study of a problem domain 

aiming at recommending improvements or solutions. The implication is 

that system analysis deals mainly with the studies of the existing system 

to ascertain it workability with the aim to design a new system which 

will overcome the shortcomings of the existing system. At this stage, the 

software development team seeks to understand in-depth the technical 

details in the processes within the scope of the computerisation effort. 

They also seek to establish the required materials for processes outside 

the scope of computerisation. System analysis is strategic because in 

our society today, a very big gap exists between those who need 

computer software in the various areas of endeavours and those who 

understand  the  processes  involved  and  the  enabling  technologies. 



CIT432 SOFTWARE ENGINEERING II 

58 

 

 

 

 

System analysis seeks to bridge this big gap. During the analysis period, 

the development team must ensure that: 

 

 they maintain absolute confidentiality of client data 

 they maintain high integrity 

 they offer the best advice to the client to help the client take 

appropriate decision 

 they documented all agreement reached with the client 

 they do not emotionally caught up in the internal affairs of the 

client. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain the practical system analysis 

 list the stages in carrying out system analysis on the existing 

system 

 explain the various steps involved in system analysis 

 discuss the importance of data gathering 

 explain the advantages and disadvantages of various method of 

data gathering 

 define system requirement specification 

 list the major goals of software requirement analyses. 

 

 MAIN CONTENT 
 

 Data Collection 
 

Data collection also called data gathering is the process of acquiring 

relevant data relating to a particular field of study. The development 

team needs organised methods of data collection in order to be able to 

dig out relevant facts about the system in question. Data collected will 

help the development team in taking decision about the system to be 

built. Data collection tools include among others the following: 

 

3.1.1 Questionnaire Method 
 

Questionnaire is one  of the important  tools of data collection. 

Questionnaires are specially arranged document that enable the 

development team and indeed all researchers to collect information and 

opinions from respondent. A questionnaire maintains a uniform 

response format like: strongly agree, agree, neutral, disagree etc. 

Information on the questionnaire must be expressed in a few, clear, 



CIT432 SOFTWARE ENGINEERING II 

59 

 

 

 

 

unambiguous manner to ensure quick understanding and easy analysis of 

collected data. 

 

There are basically two formats of questionnaires: free-format and fixed- 

format. 

 

 Free-Format Questionnaire 
 

This is the type of questionnaire that offers the respondent greater 

latitude (freedom) in the answer. A question is asked and the respondent 

records the answer in the space provided. Examples of free-format 

questions are: 

 

What is your feeling about the subject matter? 
Are there some reasons why you think the subject should be made 

compulsory? 

 

It is recommended that the development team/system analyst phrase the 

questions in simple sentences and not use words that may be confusing. 

The analyst should also ask questions with three or fewer sentences so 

that the questions will not take more time than the respondent is willing 

to sacrifice. It should also be noted that sometimes the respondent‘s 

answer will not match the question asked. 

 

 Fixed-Format Questionnaire 
 

This type of questionnaire contains questions that require selection of 

predefined responses. In this type or questionnaire, when given any 

question, the respondent must choose from the available answer. This 

makes the results easier to tabulate. There are three types of fixed 

format: 

 

Multiple-choice questions: Here, the respondent is given several 

answers. It is also specified if more than one answer can be selected: 

 

Example: Do you feel that the operation should be computerised? 

 

Yes 

No 

 

Rating questions: Here, the respondent is given a statement and asked 

to use supplied responses to state an opinion. There should be an equal 

number of positive and negative ratings. 



CIT432 SOFTWARE ENGINEERING II 

60 

 

 

 

 

An example: Automation of the entire process will bring about better 

output 

 

Strongly agree 

Agree 

No option 

Disagree 

Strongly disagree 

 

Ranking questions: Here, the respondent is given several possible 

answers which are to be ranked in order of preference of experience. 

Example: 

Rank the following according to the time you spent processing: 

 

---------% result processing 

---------% new student Registration 

---------% continuing student Registration 

---------- % staff salary computation 

 

Advantages: 

 

Use of questionnaire in data collection has a number of advantages: 
 

a. most questionnaires can be answered quickly  

b. questionnaire allows individuals to maintain anonymity 

c. responses van be tabulated and analysed quickly 

d. questionnaire  provides  relatively  inexpensive  means  of data 
 gathering etc.  

 

Disadvantages include: 
 

a. number of respondent is often low 

b. good questionnaires are difficult to prepare 

c. there  is  no  immediate  opportunity  to  clarify  a  vague  or 

incomplete answer to any question. 

 

 Existing Documentation Method 
 

Collection of data from existing documentation helps the development 

team understand how the manual system operates. Existing documents 

may include organizational charts, interoffice memoranda, studies, 

minutes of meeting, suggestion box notes and reports that document the 

problem area. Other documents to look at according to Jeffery, L. et al. 

(2003) include, among others, the following: 



CIT432 SOFTWARE ENGINEERING II 

61 

 

 

 

 

 company‘s mission statement and strategic plan 

 accounting  records,  performance  reviews  work  measurement 

reviews and other scheduled operating reports 

 sample of manual and computerised database 

 various types of flowcharts and diagrams 

 program documentations 

 standard operating procedures, job outlines or task instruction for 

specific day-to-day operations 

 policy manuals that may place constraints on the proposed system 

 sample of manual and computerised screens and reports 

 completed forms that represent actual transaction at various point 

in the processing cycle etc. 

 

 On-Site Observation Method 
 

Many times, some technical details of how operational processes are 

carried out are not always documented. On-site observation helps the 

analyst to understand better how operational processes are physically 

carried out. In this technique, the system analyst/development either 

participates or watches a person perform activities to learn more about 

the system. Sometimes, this approach of data gathering is used when 

the validity of data collected through other methods is in question. In 

other for the system analyst to be able to obtain data  through this 

approach, the analyst does not arrive at the site and begins to record 

everything anyhow. The systems analyst must first determine how data 

will actually be captured. He/she must also identify the ideal time to 

observe a particular aspect of the system. Observation should be first 

made when the workload is normal, afterward, observation will be made 

during peak periods to gather information for measuring the effect 

caused by the increased volume. 

Advantages 

a. data gathered by observation can be highly reliable 

b. the development team will be able to see exactly what is being 

done 

c. observation is relatively inexpensive compared with other fact- 

finding methodology etc. 

Disadvantages 

a. because people usually feel uncomfortable when being observed, 

they may unknowingly perform differently when being observed. 

b. the work being observed may not involve the level of difficulty or 

volume experienced during that time period. 
c. the  tasks  being  observed  are  subject  to  various  types  of 

interruptions etc. 



CIT432 SOFTWARE ENGINEERING II 

62 

 

 

 

 

 Interview Method 
 

Interview is a type of data collection methodology in which the 

development team or system analyst collects information from 

individuals through face-to-face interactions. Interview can be used to 

achieve any or all of the following goals: verify facts, find facts, clarify 

facts, generate enthusiasm and get the end user involved. 

 

The system analyst/development team is the researcher and responsible 

for organising and conducting the interview. The client or system user 

is the interviewee who is asked to respond to series of questions. To use 

the interviewing techniques, you must possess good human relation 

skills for dealing effectively with different types of people. 

 

Advantages 
 

The interview methodology of gathering information has some 

advantages which include among others, the following: 

 

a. interview gives the system analyst an opportunity to motivate the 

interviewee to respond freely and openly to questions 

b. interview allows the system analyst to probe for more feedback 

from the interviewee 
c. interview permits the system analyst to adapt questions for each 

individual 

d. interview  permits  the  development  team/systems  analyst  to 

observe the interviewee‘s nonverbal communication. 

 

Disadvantages 
 

a. interviewing is very time-consuming and costly 

b. success of interview is highly dependent on the system 

analyst/development‘s human relation skills. 

 

 Work Sampling Method 
 

Because it may not be possible that the development team/system 

analyst studies every occurrence of every form or record in a file or 

database, the system analyst normally employs the sampling method to 

get a large enough cross section to determine what can happen in the 

system. Sampling is the process of collecting a representative sample of 

document, forms and records etc. This fact finding technique involves a 

large number of observations taken at random intervals. When using the 

sampling methodology, he/she needs to predefine the operations of the 

job to be observed, make many random observations, being careful to 

observe activities at the different time of the day.   This is done by 



CIT432 SOFTWARE ENGINEERING II 

63 

 

 

 

 

counting the different number of occurrences of each operation during 

the observation. The following guideline will help him/her develop 

observation skill: 

 

 determine the who, what, where, when, why and how of the 

observation 

 obtain permission from appropriate supervisors or managers 

 keep a low profile 

 review observation notes with appropriate individuals 

 do not interrupt the individuals at work 

 do not make assumptions etc. 

 

 Survey Method 
 

Survey is a fact-finding technique which employs telephone, mails/e- 

mails or internet for data gathering.  In telephone survey, the interviewer 

follows a prepared script that is exactly the same as a written 

questionnaire. This type allows opportunity for some opinion probing. 

The mail/e-mail survey involves use of electronic mail and non- 

electronic mail to achieve data collection. The internet method involves 

use of the international network and the World Wide Web in data 

collection. The internet is the highest data repository in our age. 

 

SELF-ASSESSMENT EXERCISE 1 
 

1. List any four advantages of interview method of data collection. 

2. Questionnaire method and observation method, which one do you 

prefer. 

3. Explain the existing document method of data collection. 

 

3.2     System Design 
This form of system design is as a result of the system analysis done in 
3.1 above. System design is the process of defining elements of a 

system like modules, architecture, components and their interfaces, and 

data for a system based on the specified requirements.The design 

involves such processes like form design (input and output), data flow 

diagram, system diagram etc. Here, the analyst will only highlight 

form design, data flow diagram. Other form of design has been 

treated in software engineering 1. 

 

3.2.1  Form Design 
 

Forms are used to capture data from system users (input) and also to 

display outputs (output form). The development team/system analyst 

should therefore design an input form for example, to be used in order to 

ensure that the required information is supplied in a consistent manner. 

On an input form, the data to be entered into files are clearly set out, 



CIT432 SOFTWARE ENGINEERING II 

64 

 

 

typically one character per cell on the form. A well designed input form 

would contain various blocks of data in order in which they will be 

prompted. The output form should also be designed in the format that 

the information it will display will be clear and easily understood. 

 

SELF-ASSESSMENT EXERCISE 2 
 

Find out the importance of good form design in software development. 

 

 Software Requirement Specification 
 

A thorough systems analysis leads to appropriate software requirement 

specification (SRS). SRS states in precise and explicit language those 

functions and capabilities the software must provide and state any 

required constraints by which the system must abide. According to 

Sajan, M. (2001), Software requirement specification is often referred to 

as the ―parent‖ document because all subsequent project management 

documents such as design specification, software architectural 

specifications, testing and validation etc. are all related to it. A well 

defined, well written SRS accomplishes the following four goals Sajan, 

M. (2001). 

 

 The Goals of Software Requirement Specification 
 

The four major goals of SRS according to Sajan, M. (2001) include: 

 

a. SRS provides feedbacks to customer. An SRS is the customers‘ 

assurance that the development team understands the issues or 

problems to be solved and the software behaviour necessary to 

address this problem. In line with this, SRS must be written in 

natural language in an unambiguous manner that may also 

include charts, tables, data flow diagrams, and decision tables 

among others. 

b. SRS decomposes problem into component parts. It must be in a 

well defined format which organises information, places borders 

around the problems and solidifies ideas. 

c. SRS serves as an input to the design specification and statement 

of work. SRS must contain sufficient details in the functional 

system requirement so that a design solution can be devised. 

d. SRS serves as a product validation check. SRS serves as a parent 

document for testing and validation strategies that will be applied 

to the requirements for validation. 



CIT432 SOFTWARE ENGINEERING II 

65 

 

 

 

 

 What you should know about writing SRS 
 

While writing SRS, there are few points you should bear in mind. Some 

of these points are: 

 

 each requirement should have a specific purpose and represent 

characteristics of problem domain 

 when writing SRS, always imagine that the requirement will be 

given to others to interpret 

 it is important to remain objective while writing SRS 

 never assume that everyone will understand the requirement the 

way you understand it 

 all terms that could have multiple meanings should be defined in 

a glossary where its meaning is made more specific. 

 

SELF-ASSESSMENT EXERCISE 3 
 

1. System  analysis  leads to  drawing  the  system  requirement 

specification. Explain how? 

2. How can SRS serve as product validation check? 
3. Why  must  you  as  a  systems  analyst  remain  objective  while 

writing the SRS. 

 

 CONCLUSION 
 

In this unit, you have learnt how you can carry out a successful and 

detailed system analysis on existing manual or less automated system 

with a view to designing a new software project. It was noted that 

during the analysis period, the development team must ensure good 

working ethics in order to maintain confidence reposed on them by their 

clients. We also discussed the different methodologies the development 

team/system analyst can employ in his/her data collection. Furthermore, 

software requirement specification was discussed. We explored the four 

major goals of software requirement specification. We also explained 

some of the factors the development team must take into consideration 

while trying to prepare the software requirement specification. Finally, 

we highlighted the need to make a good design after the systems 

analysis in order to help programmers put up proper code that will 

achieve the expected functions of the software project 



CIT432 SOFTWARE ENGINEERING II 

66 

 

 

 

 

9.0 SUMMARY 
 

Proper and detailed system analysis is strategic to the development of a 

good software product. There are several tools which enables the 

development team to gather needed data for any type of software 

project. These tools include among others: questionnaire, interview, on- 

site observation, survey, working sample, existing document etc. 

Having done a proper system analysis, it forms the basis for developing 

the software requirement specification (SRS) document. The SRS 

document states in precise and explicit language those functions and 

capabilities the software must provide as well as states any required 

constraints by which the system must abide. This SRS is a parent 

document that guides the development team throughout the development 

process. 

 

10.0 TUTOR-MARKED ASSIGNMENT 
 

1. Discuss the roles of software requirement specification (SRS) 

document. 

2. Explain the two formats of questionnaire treated in this unit. Give 

example of each format. 
3. What is data collection? And why is data collection necessary in 

software development. 

4. Mention and explain any five ways of analysing an existing 

system. 

5. What do you understand by software requirement specification 

(SRS) 

6. Discuss the advantages and disadvantages of on-site observation 

method of data collection. 

 

7.0 REFERENCES/FURTHER READING 
 

Boehm, B.; Egyed, A.; Kwan, J.; Port, D.; Shah, A. & Madachy, R. 

(1998). Using the WinWin Spiral Model: A Case 

Study.Computer, 31(7), 33-44. 

 

Garg, P.K.; Mi, P.; Pham, T.; Scacchi, W. & Thunquest, G. (1994). The 

SMART Approach for Software Process Engineering, Proc. 16th. 

Intern. Conf. Software Engineering, 341 - 345. 

 

Jeffery, L.; et al. ((2001). System Analysis and Design Methods. (5th 

ed.). McGraw-Hill Higher Education. A Division of the McGraw 

Hill Companies, pp. 163-210. 

 

Mills, H.D.; Dyer,  M. & Linger, R.C.  (1987). Cleanroom Software 

Engineering,  IEEE  Software,  Royce,  W.  W.,  Managing  the 



CIT432 SOFTWARE ENGINEERING II 

67 

 

 

 

 

Development of Large Software Systems, Proc. 9th. Intern. Conf. 

of Software Engineering,IEEE Computer Society, 328-338 

Originally published in Proc.WESCON, 1970. 

 

Moore, J.W.; P.R. DeWeese, & Rilling, D. (1997). "U. S. Software Life 

Cycle Process Standards," Crosstalk: The DoD Journal of 

Software Engineering, 10:7. 

 

Sajan, M. (2007). Software Engineering(Rev. ed.). Ram Naga, New 

Delhi: S. Chand & Company Ltd., pp. 1-5, 27-36, 138-141, 152- 

158, 2881-187. 

 

Stephen S. (2001). Software Engineering. ISBN-0-256-LL454-4. 



CIT432 SOFTWARE ENGINEERING II 

68 

 

 

 

 

UNIT 3       SOFTWARE CODING AND TESTING 
 

CONTENTS 
 

1.0     Introduction 

2.0     Objectives 

 Main Content 

 Program Code 

 What is Good Code? 

 Qualities of Good Code 

 Modularity in Programming 

 Program Control Structures 

 Sequence Program Structure 

 Selection Structure 

 Iteration Structure 

 Software Testing 

 Testing Fundamentals 

 Purpose of Testing 

 Test Plan 

 Purpose of Testing 

3.4.2  Testing Methods 

3.4.4  Types of Testing 

4.0     Conclusion 

5.0     Summary 

6.0     Tutor-Marked Assignment 

7.0     References/Further Reading 

 

1.0    INTRODUCTION 
 

In the previous unit, you learnt how to analyse the existing system, draw 

a correct specification document for the new project, and also put up a 

good design for the new system. In this unit, you will learn how to 

translate design into actual program codes that will perform the 

functions specified in the specification document. We may not go into 

writing real computer programs, so if you are not a good programmer do 

not be afraid, you will understand the issues we are about to discuss. 

 

2.0    OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain program code 

 describe when program code is said to be good 

 list the qualities of good code 

 describe the different program control structures 

 discuss modularity in programming 



CIT432 SOFTWARE ENGINEERING II 

69 

 

 

 

 

 define software testing 

 explain reasons for software errors 

 describe software testing methods. 

 

 MAIN CONTENT 
 

 Program Code 
 

Program code simply means the actual computer syntax or computer 

program used to perform real life computations (Sajan, 2001). Coding 

breaks analysis down into two basic parts: coding the data to put it into 

useable form and computing with the data. Coding is normally 

achieved with specific computer languages. At this level, computer 

languages that are employed are mostly the high level programming 

languages (high level languages are computer programming languages 

that use close to natural languages e.g. (English) but with special syntax 

and semantics.) 

 

 What is “Good Code?” 
 

―Good code‖ can be defined to be a code that works, free of errors 

(bugs), readable and maintainable (Sajan, 2001). Most software 

development team have coding ―standard‖ that all programmers are 

supposed to adhere to. So, though every programmer may have his own 

style of coding, there are some basic facts that every programmer must 

consider while writing codes. Some of the points to consider are: 

 
 seek to minimize or eliminate use of global variables.  This 

will help you avoid some errors 

 descriptive  variable  names  should  be  used  and  try  to  avoid 

abbreviation 

 use whitespace generously vertically and horizontally 

 organize code in easy to read form 

 use comment statements always to avoid confusion 

 coding style should be consistent throughout the program (e.g. 

naming convections, identifications) 

 make use of descriptive functions and method name 

 an application should include proper documentations of overall 

program function and flow. 



CIT432 SOFTWARE ENGINEERING II 

70 

 

 

 

 

 Qualities of “Good Code” 
 

There are some important qualities of ―good code‖.  Let us now briefly 

discuss some of these qualities: 

 

 Consistency: Consistent code is written in such a way that it is 

easy for people to understand how the program works. When 

reading consistent code, one subconsciously forms a number of 

assumptions and expectations about how the code works. 

 Simplicity: This means you don‘t do in ten lines what you can do 

in five lines. It means you make extra effort to be concise. 

 Efficiency: This means that your program is fast and economical. 

 Modularity: Code should be written in modular way where each 

module is focused on one task or goal. This will make your code 

reusable. 

 Cleanliness: Clean code is written in a form that is easy to read. 

It is in a form that people can read it with minimum effort so that 

they can understand it easily. 

 Correctness: A code is designed to be correct to a point that 

people spend less time worrying about bugs and more time 

enhancing the features of a program. Correct code does not 

crash. 

 Extensibility: Extensible code is written in a form that 

programmers can easily add new features to the program. These 

are codes that are easier to reuse and modify without much 

assumptions. 

 Maintainability: No matter how well you have written the 

code, there will be bugs, which you will have to fix.  The code 

should be maintained with ease, even by other programmers. 
 

SELF-ASSESSMENT EXERCISE 1 
 

1. What is ―bad code‖? 

2. What are some basic facts that every programmer must consider 

while writing codes. 

 

3(a)    program code 

(b)      Programming. 

 

 Modularity in Programming 
 

A module is a program unit usually designed to perform a particular task 

in the main program. Modular programming is defined as a 

programming style where complex software project is broken down into 

smaller manageable units. The complex system is usually broken into 

subsystems and in-turn into program modules. In the same vein, during 

programming in a particular programming high level language, it is 



CIT432 SOFTWARE ENGINEERING II 

71 

 

 

important to continue with the modular form of design to facilitate their 

easy representations following a standard control logic structures. Some 

of these standard control structures will be discussed in the next section. 

 
 

 Program Control Structures 
 

If you want to create a powerful, intelligent, versatile and useful 

program, you need some methods or techniques for these forms of 

program flow. These standard programming techniques used in 

programming is what is known as program control structures. Program 

control structures help programmers to avoid arbitrary large and 

complex flowcharts and replace them with modular forms. This 

modular form facilitates representations by any of the three basic 

program control structures, namely; sequence structure, selection 

structure and iteration structure.  Let us now discuss each of these 

program structures one after the other. 

 

Please note that in our discussion, we shall use pseudo codes which are 

an English-like method of expressing the logic of a flowchart. However, 

in some of our illustrations, we shall simply show the syntax (format) of 

each structure as it is supported by most common high level languages 

e.g. Qbasic, visual basic etc. 

 

 Sequence Structure 
 

In this program structure, data flow arrow moves from one process to 

the next process in a sequential order. This implies that two processes 

are executed one after the other in a chronological manner. Sequential 

structure can be represented using pseudo codes as: 

 

 Process A 

 Process B 

 

Diagrammatically, it can be represented as follows: 
 

 

 

Figure 3.1:       Flowchart of a Sequence Program Structure 

A 

B 



CIT432 SOFTWARE ENGINEERING II 

72 

 

 

 

 

 Selection Structure 
 

This is the type of program construct that uses a test condition between 

alternative action (Okey, 2003). Selection determines which path a 

program takes when it is running.  

Three main selection mechanisms exist. These are IF-THEN –ELSE, 

Block IF-THEN-ELSE, SELECT CASE CONSTRUCTS. 

 

Let us now discuss each of them using their syntax as it is supported by 

most of the high level programming languages. 

 

 IF-THEN-ELSE Structure 
 

This form of selection exists in a situation where the first statement is 

evaluated if the specified condition is TRUE; else the second statement 

is evaluated. The syntax for this construct is thus: 

 

 IF condition THEN statement [ELSE statement] 

 

Where condition is any expression that can be evaluated as true or false. 

The ELSE part is optional 

Let us again use a pseudo code to illustrate that: 

IF (X) THEN 

Process A 
ELSE  

Process B 

END IF 

 

 Block IF-THEN-ELSE Structure 
 

In this construct, each of the process contains complex logical structure 

requiring nested IF-THEN-ELSE. It is nested in the sense that IF- 

THEN-ELSE constructs is found in another IF-THEN- ELSE. The 

syntax is thus: 

 

IF condition -1 THEN 

[statementblock-1] 
ELSEIF condition-2 THEN 

[statementblock-2] 

ELSE  

[statementblock-n] 

END IF 



CIT432 SOFTWARE ENGINEERING II 

73 

 

 

 

 

Where 
 

Condition 1& 2: An expression that can be evaluated as True or false 

Statementblock-1, statementblock-2, statementblock-n: is one or more 

statements on one or more lines 

 

 Select Case Constructs 
 

This is a program structure where a solution may need to take one of 

many different actions for execution based on the value of a correct 

variable. Only one option is allowed to be taken (Inyiama, H. & Alo, R., 

2009). The syntax for the SELECT CASE CONSTRUCT is: 

 

SELECT CASE testexpression 

CASE expressionlist1 

[statementblock-1] 

CASE expressionlist2 

[statementblock-2] 

CASE ELSE 

[statementblock-n] 

END SELECT 

 

Where 

Testexpression: Is any numeric or string expression 

Expressionlist 1 & 2: one or more expression to match tstexpression 

Statementblock-1-n : one or more statement on one or more lines 

 

For example, in order to compute the performance of a student in a 

particular course using the SELECT CASE construct, the score becomes 

the control variable. Since no score can have two grades, the 

computation can be represented using pseudo code as follows: 

 

SELECT CASE SCORE 

 

CASE 1 PROCESS GRADE A 

CASE 2 PROCESS GRADE B 

CASE 3 PROCESS GRADE C 

CASE 4 PROCESS GRADE D 

CASE 5 PROCESS GRADE E 
CASE 6 PROCESS GRADE F 

END SELECT 



CIT432 SOFTWARE ENGINEERING II 

74 

 

 

 

 

3.3.3  Iteration Structure 
 

This is the type of program construct that allows a controlled repetition 

of portion of a program code. I t e r a t i o n  i s  t h e  r e p e a t e d  

e x e c u t i o n  o f  a  s e c t i o n  o f  c o d e  w h e n  a  p r o g r a m i s  

r u n n i n g .  

The basic iteration constructs are WHILE…. WEND,      

DO…….LOOP, DO…..UNTIL, FOR…..TO…NEXT.  Let  us  now  

give  the  syntax  of  each  of  the repetitive  constructs. 

  

FOR….NEXT Construct 
 

The syntax is: 

 

FOR index = initialvalue TO finalvalue [STEP stepsize] 

Statement(s) 

NEXT [index] 

 

Where 

 Index represents a numeric variable used as a loop counter 

 Initialvalue represents the initial(first) value of the counter 

 Finalvalue represents the final (last) value of the counter 

 Stepsize  represents  the  amount  the  loop  counter  variable  is 

changed each time through the loop. 

 

Note: There is also the nested FOR……TO……….NEXT 

 

DO….. LOOP Construct 
 

The syntaxes are as follows: 

 

DO [{WHILEIUNTIL} condition}] 

[statementblock] 

LOOP 

 

DO 

[statementblock] 

LOOP [{WHILEIUNTIL} condition}] 

 

NOTE: Syntax of form (a) tests its loop exit condition at the top while 

the syntax (b) tests its exit condition at the bottom of the loop. 

 

Also items in a pair of square brackets [ ] are optional. Items in a pair 

braces- { } separated by ―I‖ character mean that one of the items must 

be used. 



CIT432 SOFTWARE ENGINEERING II 

75 

 

 

 

 

WHILE…….WEND Construct 
 

This construct also tests its exit condition at the top. The syntax is as 

follows 

 

WHILE condition 

Statementblock 

WEND 

 

Where 

 

 Condition:  represents  a  numeric  expression  that  the  program 

evaluates as true or false 

 Statementblock: represents one or more statements that must be 

repeatedly executed while the condition remains true. 

 

SELF-ASSESSMENT EXERCISE 2 

 

1. Enumerate the three main selection structure. 

2. Differentiate between a module and a subsystem. 

3. Give the syntax of the WHILE ----WEND structure. 

 

 Software Testing 
 

Software testing is the process of executing a program or system with 

the intent of finding errors (bugs); that is to say that testing involves any 

activity aimed at evaluating an attribute or capability of a program or 

system and determining that it meets its required results (Sajan, 

2001). Software testing is a method to check whether the actual software 

product matches expected requirements and to ensure that software 

product is defect free. 

 

 Testing Fundamentals 
 

There are some basic things you must be conversant with to be able to 

successfully carry out software testing. Some of these issues include 

knowing some reasons for software (bugs) and few principles in testing, 

test plan etc. 

 

Few principles in testing: Listed below are few principles to take note 

of: 

 

 Testing should be based on user requirements 

 Test planning should be done early 

 Testing should start at the module 

 Test time and resources are limited 

 You must use effective resources to test. 



CIT432 SOFTWARE ENGINEERING II 

76 

 

 

 

 

 Reasons for Software Errors (Bugs) 

  

 A Software Bug is a failure or flaw in a program that produces undesired or 

incorrect results. It is an error that prevents the application from 

functioning as it should. 
 

The following among other, are the causes of error in programs: 

 

 Poorly documented codes 

 Faulty requirements definition 

 Software complexity 

 Programming error 

 Time pressures 

 Software development tools 

 Changing requirements etc. 

 

 Test Plan 
 

A software project plan is a document that describes the objectives, 

scope, approach and focus of a software testing (Sajan, 2001). Though 

the content of a test plan may vary from project to project, every test 

plan must contain all that was specified in the specification document. 

Examples of some items found in a test plan include among others, the 

following: 

 

 Title of the project 

 Software product overview 

 Relevant standard or legal requirement. 

 Project risk analysis 

 Software entrance and exit criteria etc. 

 

 Purpose of Testing 
 

According to Sajan, M. (2001), testing is usually performed for the 

following purposes: 

 

 Verification and Validation 
 

These two words come to play here because they are the program codes 

that actually perform the functions spelt out in the specification 

document. These two processes help to ensure that the product satisfies 

requirements of the software product. Verification is the testing that 

takes place at the end of each phase. It is a test in each step in the 

process of building the software to ensure the software yield the right 

product. Validation is the testing that takes place after the complete 

product has been developed before acceptance testing. Validation can 



CIT432 SOFTWARE ENGINEERING II 

77 

 

 

also be defined as the process of determining whether the product as a 

whole satisfies its specification document. These two  processes 

therefore involve activities such as reviews, inspections, walkthroughs 

and testing. 
 

 

 To Improve Quality 
 

With regards to testing, quality means the conformance to the specified 

design requirement that is performing as required under specified 

circumstances. Typical software quality factors include correctness, 

efficiency, flexibility, usability, documentation, maintainability, 

reusability etc. Quality is very necessary because error could cause 

serious losses, disasters. 

 

 For Reliability Estimation 
 

Software reliability has important relations with many aspects of 

software, including the structure, and the amount of testing it has been 

subjected to. Based on an operational profile (an estimate of the relative 

frequency of use of various inputs to the program), testing can be used 

as a statistical sampling method to gain failure data for reliability 

estimation. 

 

 Testing Methods 
 

According  to  Sajan,  M.  (2001),  testing  methods  can  be  broadly 

classified into two: 

 

 White box or structural testing 

 Black box or functional testing 

 

 White Box or Structural Testing 
 

White box testing is a form of testing that concentrates on the procedural 

details. Using this testing method, the internal structure is being 

disclosed with the main goal to detect faults. White box testing relies 

on the intimate knowledge of the code and procedural design to drive 

the test case. It is most widely utilised in unit testing to determine all 

possible paths within a module to execute all loops and to test all logical 

expression. White box testing helps the software engineer to: 

 

 Guarantee that all independent paths within a module have been 

exercised at least once. 

 Examine all logical decisions on their true and false sides. 

 Executes all loops and test their operations at their limits. 

 Exercise data structures to ensure their validity. 



CIT432 SOFTWARE ENGINEERING II 

78 

 

 

 

 

 Black Box Testing or Functional Testing 
 

Black box testing focuses on the overall functionality of the software. 

This testing method allows the functional testing to uncover faults like 

incorrect or missing functions, errors in any of the interfaces, errors in 

data structures or databases and errors related to performance and 

program initialisation or termination. To perform a successful black box 

test, the relationships between the many different modules in the system 

model need to be understood. Next, all necessary ways of testing all 

object relationships need to be defined. Black box testing aims to test a 

given program‘s behaviour against its specification without making any 

reference to the internal structures of the program or the algorithms 

used. 

 

3.4.4  Types of Testing 
 

There many types of testing. Let us highlight few of them here: 

 
 Unit testing: This is a test of a particular function or code 

modules. Unit testing requires detailed knowledge of the internal 

program design and code and is typically done by the 

programmer himself. 

 Incremental integration testing: It is a continuous testing of an 

application as new functionality is added; it requires that various 

aspects of an application‘s functionality be independent enough 

to work separately before all parts of the program are completed. 

 Integration testing: This is the testing of combined parts of an 

application to determine if they function together correctly. The 

―part‖ include code modules, individual applications etc. 

Integration testing procedure can be performed in three ways: 

Top-down, bottom-up, or using ―Big-Bang‖ approach 

(Humphery). 

 Top-down integration strategy: This is a strategy where 

modules are developed and tested starting from the top level of 

the programming hierarchy and continuing with the lower levels. 

Top-down strategy is an incremental approach since the testing is 

done one level at a time. The benefits of top-down integration 

are that having a skeleton, we can test major functions early in 

the development process. 

 Bottom-up integration: This integration strategy starts with 

building and testing the low level modules first, working its way 

up the hierarchy. The advantage of bottom-up integration is that 

there is no need for program stubs as we start developing and 

testing with actual modules. 

 Big-Bang approach: In this integration approach, all the 

modules or builds are constructed and tested independently of 



CIT432 SOFTWARE ENGINEERING II 

79 

 

 

 

 

each other and when these are finished, they are all put together 

at the same time. The advantage of this approach is that it is very 

quick as no driver or stubs are needed, thus cutting down the 

development time. 

 System testing: System testing is a form of testing based on 

overall requirements specifications. It embraces all combined 

parts of a system. This type of test involves examination of the 

whole computer system. All the software components, all 

hardware components and the interfaces are tested together. 

 Function testing: Is a testing process that is black-box in nature. 

It is aimed at examine the overall functionality of the product. 

Function testing usually includes testing of all the interfaces and 

should therefore; involve the client in the process. The 

specification in function testing should be very detailed 

describing who, where, when and how the test should be 

conducted and what exactly will be tested. 

 

SELF-ASSESSMENT EXERCISE 3 
 

1. Is verification and validation the same? 

2. Why is high level languages mostly used in the development of 

software products today? 

3. What is white box testing? 

 

4.0     CONCLUSION 
 

In this unit, you have learnt that in order to facilitate maintenance, a 

clear programming style is needed and a good programming practice 

must be followed. It was noted that organisations have programming 

standard which all programmer working for them must adopt. We went 

further to discuss some program control structures which when followed 

in programming, helps one to come up with ―good‖ programs. 

Moreover, software testing was discussed. You also learnt that testing 

enables one to ensure that the software product if free of bugs and that it 

satisfies the conditions specified in the specification document. Two 

methods of carrying out software testing; black box/functional testing 

and white box/structural testing were highlighted. A comprehensive test 

plan must also be followed in order to arrive at the expected result. 

 

8.0     SUMMARY 
 

The software product designed can only be realised if translated to 

program codes using any high level programming language of choice or 

as specified in the contract. Programmers must put up codes that are 

clean, consistent, correct and extensible following the standard control 

programming structures.   After the coding, software testing must be 



CIT432 SOFTWARE ENGINEERING II 

80 

 

 

 

 

carried out to ensure that the software product is working according to 

specifications. There are also standards followed while carrying out 

software testing. These standards help developers to achieve the very 

purpose of software testing. 

 

9.0 TUTOR-MARKED ASSIGNMENT 
 

1a. Define good code 

b. Explain any three qualities of good code. 

 

2. Explain vividly, any two program control structures of your 

choice. 

3. What is modularity in programming? 

4. Give and explain the syntax of the block IF-THEN-ELSE 

structure. 

5. Explain any two purposes of software testing you know. 

6. Give any four reasons for software bugs. 

 

7.0 REFERENCES/FURTHER READING 
 

Ani, C.O. (n.d). Programming with Microsoft Basic (New ed.). Enugu: 

Immaculate Publications Limited, pp. 76-87. 

 

Boehm, B.; Egyed, A.; Kwan, J.; Port, D.; Shah, A. & Madachy, R. 

(1998). Using the WinWin Spiral Model: A Case Study, 

Computer, 31(7), 33-44. 

 

Garg, P.K.; Mi, P.; Pham, T.; Scacchi, W. & Thunquest, G. (1994). The 

SMART Approach for Software Process Engineering, Proc. 16th. 

Intern. Conf. Software Engineering, 341 - 345. 

 

Jeffery, L.; et al. (2001). System Analysis and Design Methods (5th ed.). 

McGraw-Hill Higher Education, pp. 163-210. 

 

Mills, H.D.; Dyer, M.; & Linger, R.C. (1987). Cleanroom Software 

Engineering, IEEE Software, Royce, W. W., Managing the 

Development of Large Software Systems, Proc. 9th. Intern. Conf. 

of Software Engineering, IEEE Computer Society,328-338 

Originally Published in Proc.WESCON, 1970. 

 

Moore, J.W.; DeWeese, P.R. & Rilling, D. (1997). "U. S. Software Life 

Cycle Process Standards," Crosstalk: The DoD Journal of 

Software Engineering, 10:7. 



CIT432 SOFTWARE ENGINEERING II 

81 

 

 

 

 

Sajan,  M.  (2007).  Software  Engineering  (Rev.  ed.).  New  Delhi:  S. 

Chand & Company Ltd., pp. 1-5, 27-36, 138-141, 152-158, 2881- 

187. 

 

Stephen, S. (2001). Software Engineering. ISBN-0-256-LL454-4. 



CIT432 SOFTWARE ENGINEERING II 

82 

 

 

 

 

MODULE 4 FORMAL METHODS 
 

Unit 1 Overview of Formal Methods 

Unit 2 Overview of some Formal Methods 

Unit 3 Software Project Management 
 

 
UNIT 1       OVERVIEW OF FORMAL METHODS 

 

CONTENTS 

 

1.0     Introduction 

2.0     Objectives 

 Main Content 

 What are Formal Methods? 

 Why Consider Formal Methods? 

 Classifications of Formal Methods 

 Basic Classifications 

 Classifications  as  with  Programming  Language Semantics 

 Lightweighted Formal Methods 

 Uses of Formal Methods 

 Specification 

 Development 

 Verification 

 Human-Directed Proof 

 Automated Proof 

 Cautions in the Use of Formal Method 

 Limitations of Formal Methods 

4.0     Conclusion 

5.0     Summary 

6.0     Tutor-Marked Assignment 

7.0     References/Further Reading 

 

1.0    INTRODUCTION 
 

Every software engineering methodology is based on a recommended 

development processes which are of several phases: analysis, 

specification, design, coding, unit testing, integration and system testing 

and maintenance. Formal methods can be a foundation for describing 

complex systems. It can also be a foundation for reasoning about 

systems or provides support for program development. The use of 

formal methods for software and hardware designs is motivated by the 

expectation that, as in other engineering disciplines, it will perform 

appropriate mathematical analysis that can contribute to the reliability 

and robustness of a design.    However, the high cost of using formal 



CIT432 SOFTWARE ENGINEERING II 

83 

 

 

 

 

methods implies that they are only used in the development of high- 

integrity systems, where safety or security is of utmost importance. In 

this unit, we shall simply take an overview of what formal methods are, 

their classifications, uses, limitations and advantages. In subsequent 

units, we may pick on a particular formal method to enable you 

appreciate more what they look like. 

 

2.0    OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 describe the formal methods 

 list some examples of formal methods 

 explain reasons for learning formal methods 

 discuss the classification of formal methods 

 describe the uses of formal methods 

 explain precautions in the use of formal method 

 describe the limitations of formal methods. 

 

 MAIN CONTENT 
 

 What are Formal Methods? 
 

In computer science and software engineering, formal methods are a 

particular kind of mathematically-based techniques for the specification, 

development and verification of software and hardware systems. 

Formal methods are best described as the application of a fairly broad 

variety of theoretical computer science fundamentals, in particular logic 

calculi, formal languages, automata theory, and program semantics, but 

also type systems and algebraic data types to problems in software and 

hardware specification and verification. 

 

Formal methods allow a software engineer to create a specification that 

is more complete, consistent, and unambiguous than those produced 

using conventional or object-oriented methods. Set theory and logic 

notation are used to create a clear statement of facts (requirements). This 

mathematical specification can then be analysed to prove correctness 

and consistency. Because the specification is created using mathematical 

notation, it is inherently less ambiguous than informal modes of 

representation. The following topic categories are presented. 

 

 Why Considering Formal Method? 
 

There are some reasons  we consider formal methods. They include 

among others, the following: 



CIT432 SOFTWARE ENGINEERING II 

84 

 

 

 

 

 Complexity of systems with embedded software has increased 

rapidly 

 Maintaining reliability in software-intensive systems is very 

difficult 

 Systems are increasingly dependent on software components. 

 

 Classification of Formal Method 
 

 Basic Classifications 
 

Formal methods can be used at a number of levels as shown below: 

 
 Level 0: Formal specification may be undertaken and then a 

program developed from this informally. This may be the most 

cost-effective option in many cases. 

 Level 1:      Formal development and formal verification may 

be used to produce a program in a more formal manner. For 

example, proofs of properties or refinement from the 

specification to a program may be undertaken. This is most 

appropriate in high-integrity systems involving safety or security. 

 Level 2: Theorem provers may be used to undertake fully 

formal machine-checked proofs. This can be very expensive and 

is only practically worthwhile if the cost of mistakes is extremely 

high (e.g., in critical parts of microprocessor design). 

 

 Classification as with Programming Language Semantics 
 

As with programming language semantics, styles of formal methods 

may be roughly classified as follows: 

 

 Denotational semantics: Here, the meaning of a system is 

expressed in the mathematical theory of domains. Proponents of 

such methods rely on the well-understood nature of domains to 

give meaning to the system; critics point out that not every 

system may be intuitively or naturally viewed as a function. 

 Operational semantics: Here, the meaning of a system is 

expressed as a sequence of actions of a (presumably) simpler 

computational model. Proponents of such methods point to the 

simplicity of their models as a means to expressive clarity; critics 

oppose that the problem of semantics has just been delayed (who 

defines the semantics of the simpler model?). 

 Axiomatic semantics: Here, the meaning of the system is 

expressed in terms of preconditions and postconditions which are 

true before and after the system performs a task, respectively. 

Proponents note the connection to classical logic; critics note that 



CIT432 SOFTWARE ENGINEERING II 

85 

 

 

 

 

such semantics never really describe what a system does (merely 

what is true before and afterwards). 

 

SELF-ASSESSMENT EXERCISE 1 
 

Do you think that application of formal methods in software 

development is necessary? Give reason(s) for your answer. 

 

 Lightweight Formal Methods 
 

Some practitioners believe that the formal methods community has 

overemphasized full formalisation of a specification or design. They 

contend that the expressiveness of the languages involved, as well as the 

complexity of the systems being modelled, makes full formalisation a 

difficult and expensive task. As an alternative, various lightweight 

formal methods, which emphasize partial specification and focused 

application, have been proposed. Examples of this lightweight approach 

to formal methods include the Alloy Object Modelling Notation, 

Denney's synthesis of some aspects of the Z notation with use case 

driven development, and the Vienna Development Method (VDM) 

Tools. 

 

 Uses of Formal Method 
 

Formal methods can be applied at various points through the 

development process. 

 

 Specification 
 

Formal methods may be used to give a description of the system to be 

developed, at whatever level(s) of detail desired. This formal description 

can be used to guide further development activities (this will be 

discussed in subsequent sections). Additionally, formal methods can be 

used to verify that the requirements for the system being developed have 

been completely and accurately specified. The need for formal 

specification systems has been noted for years. In the ALGOL 60 

Report, John Backus presented a formal notation for describing 

programming language syntax (later named Backus normal form or 

Backus-Naur form (BNF)); Backus also described the need for a 

notation for describing programming language semantics. 

 

 Development 
 

Once a formal specification has been developed, the specification may 

be used as a guide while the concrete system is developed (i.e. realised 

in software and/or hardware). Examples: 



CIT432 SOFTWARE ENGINEERING II 

86 

 

 

 

 

 If the formal specification is in an operational semantics, the 

observed behaviour of the concrete system can be compared with 

the behaviour of the specification (which itself should be 

executable or simulated). Additionally, the operational 

commands of the specification may be amenable to direct 

translation into executable code. 

 If the formal specification is in an axiomatic semantics, the 

preconditions and postconditions of the specification  may 

become assertions in the executable code. 

 

 Verification 
 

Once a formal specification has been developed, the specification may 

be used as the basis for proving properties of the specification (and 

hopefully by inference the developed system). 

 

 Human-Directed Proof 
 

Sometimes, the motivation for proving the correctness of a system is not 

the obvious need for re-assurance of the correctness of the system, but a 

desire to understand the system better. Consequently, some proofs of 

correctness are produced in the style of mathematical proof: handwritten 

(or typeset) using natural language, using a level of informality common 

to such proofs. A "good" proof is one which is readable and 

comprehensible by other human readers. Critics of such approaches 

point out that the ambiguity inherent in natural language allows errors to 

be undetected in such proofs; often, subtle errors can be present in the 

low-level details typically overlooked by such proofs. Additionally, the 

work involved in producing such a good proof requires a high level of 

mathematical sophistication and expertise. 

 

 Automated Proof 
 

In contrast, there is increasing interest in producing proofs of correctness 

of such systems by automated means. Automated techniques fall into 

two general categories: 

 
 Automated theorem proving: Here, a system attempts to 

produce a formal proof from scratch, given a description of the 

system, a set of logical axioms, and a set of inference rules. 

 Model checking: Here, a system verifies certain properties by 

means of an exhaustive search of all possible states that a system 

could enter during its execution. 

 

Neither of these techniques works without human assistance. Automated 

theorem provers usually require guidance as to which properties are 



CIT432 SOFTWARE ENGINEERING II 

87 

 

 

 

 

"interesting" enough to pursue; model checkers can quickly get bogged 

down in checking millions of uninteresting states if not given a 

sufficiently abstract model. Proponents of such systems argue that the 

results have greater mathematical certainty than human-produced 

proofs, since all the tedious details have been algorithmically verified. 

The training required to use such systems is also less than that required 

in producing good mathematical proofs by hand. This makes the 

techniques accessible to a wider variety of practitioners. 

 

Critics note that some of those systems are like oracles: they make a 

pronouncement of truth, yet give no explanation of that truth. There is 

also the problem of "verifying the verifier"; if the program which aids in 

the verification is itself unproven, there may be reason to doubt the 

soundness of the produced results. Some modern model checking tools 

produce a "proof log" detailing each step in their proof, making it 

possible to perform, given suitable tools, independent verification. 

 

SELF-ASSESSMENT EXERCISE 2 
 

Explain any two development processes where formal method is applied 

and how? 

 

 Cautions in the Use of Formal Methods 
 

Judicious application to suitable project environments is critical if 

benefits are to exceed costs 

 

Formal method and problem domain expertise must be fully integrated 

to achieve positive results. 

 

 Limitations of Formal Methods 
 

Limitations of formal method include, among others, the following: 

 

 Formal method is used as an adjunct to, not a replacement for, 

standard quality assurance methods 

 Formal methods are not a panacea, but can increase confidence in 

a product‘s reliability if applied with care and skill 

 Formal  methods,  though  very  useful  for  consistency  checks, 

cannot assure completeness of a specification. 

 

 CONCLUSION 
 

Formal method is the application of a fairly broad variety of theoretical 

computer science fundamentals, in particular, logic calculi, formal 

languages, automata theory, and program semantics. You learnt that 



CIT432 SOFTWARE ENGINEERING II 

88 

 

 

 

 

increase in software complexity, and the problem of maintaining 

software reliability among others, are reasons why formal methods are 

needed. We also classified formal methods on basic classification and 

also based on programming language semantics. The reasons for the use 

of formal method were also highlighted. Finally, we discussed some 

limitations of formal methods. 

 

5.0 SUMMARY 
 

In this unit, you have learnt that formal method: 

 

 could be a foundation for describing complex systems 

 could be a foundation for reasoning about systems 

 provides support for program development 

 are no panacea 

 can detect defects earlier in life cycle 

 can be applied at various levels of resource investment 

 can be integrated within existing project process models 

 can  improve  quality  assurance  when  applied  judiciously  to 

appropriate projects. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Explain clearly the various stages where formal method is applied 

in software development. 

2. Dwell  concisely  on  the  two  basic  classifications  of  formal 

methods as discussed in this unit. 
3. Explain any three limitations of formal method. 

4. What is Human-directed proof? 

 

7.0 REFERENCES/FURTHER READING 
 

Adelard, R. M.; Peter, F.; Mural & Specbox. (1991). In VDM'91 Formal 

Software Development Methods. Springer Berlin / Heidelberg. 

 

Bjørner, D. & Cliff B. J. (1978). The Vienna Development Method: The 

Meta-Language, Lecture Notes in Computer Science 61. Berlin, 

Heidelberg, New York: Springer. 

 

Derek, A. & Darrel, I. (1991). Practical Formal Methods. McGraw Hill. 

15th International Symposium on Formal Methods, 2008.  

http://www.fm2008.abo._/. 



CIT432 SOFTWARE ENGINEERING II 

89 

 

 

 

 

Fitzgerald, J. S. & Larsen, P.G. (1998). Modelling Systems: Practical 

Tools and Techniques in Software Engineering. Cambridge: 

University Press. 

 

Hußmann, H. (1997). Formal Foundations for Software Engineering 

Methods, Vol. 1322 of Lect. Notes Comp. Sci. Berlin: Springer. 

 

Dawes, J. (1991). The VDM-SL Reference Guide. Pitman. 

 

Kemmerer, R. A. (1990). Integrating Formal Methods into the 

Development Process. IEEE Software, 7(5):37–50. 



CIT432 SOFTWARE ENGINEERING II 

90 

 

 

 

 

UNIT 2       OVERVIEW OF SOME FORMAL METHODS 
 

CONTENTS 
 

1.0     Introduction 

2.0     Objectives 

6.0     Main Content 

 What is VDM? 

 History of VDM 

 Functions 

 Explicit Functions 

 Implicit Functions 

 VDM Features 

 Structuring 

 Structuring in VDM-SL 

 Structuring in VDM++ 

 Tool Support 

 The Z Notation 

 History of Z Notation 

 Usage and Notation 

4.0     Conclusion 

5.0     Summary 

6.0     Tutor-Marked Assignment 

7.0     References/Further Reading 

 

1.0    INTRODUCTION 
 

In this unit, you will learn about some specific formal methods. The two 

formal methods treated here, are VDM and Z notation. There are many 

different approaches to formalisation, but one of the longest established 

formal methods for development of computer-based systems is VDM, 

the Vienna Development Method. The VDM is a collection of 

techniques for the modelling, specification and design of computer- 

based systems. VDM has its roots in the IBM laboratories in Vienna in 

the mid-1970s. The corresponding standardised definition language is 

called VDM-SL. There is also an object-oriented extension of VDM, 

called VDM++. There are also several industrial applications of VDM 

(especially VDMTools), for example Boeing used VDMTools for 

reverse engineering from Java back to VDM++. This unit will also take 

a brief overview of another formal method known as Z notation. Z 

notation is a formal method based on the standard mathematical notation 

used in axiomatic set theory, lambda calculus, and first-order predicate 

logic. All expressions in Z notation are typed, thereby avoiding some of 

the paradoxes of naive set theory. Z contains a standardised catalog 

(called the mathematical toolkit) of commonly used mathematical 

functions and predicates. 



CIT432 SOFTWARE ENGINEERING II 

91 

 

 

 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 









describe the Vienna Development Method (VDM) 

discuss the history of VDM 

list the basic features of VDM 

explain the language of VDM 

 











describe structuring in VDM 

explain VDM tools support 

discuss the Z notation 

describe the history of Z notation 

list the various usages and notation of the Z notation. 

 

3.0 MAIN CONTENT 
 

3.1 What is VDM? 
 

The Vienna  VDM  is  a  formal  language  developed  at the  IBM 

laboratories in Vienna. VDM stands for "Vienna Development Method": 
a collection of techniques for the formal specification and development 

of computing systems. It consists of a specification language called 

VDM-SL; rules for data and operation refinement which allow one to 

establish links between abstract requirements specifications and detailed 

design specifications down to the level of code; and a proof theory in 

which rigorous arguments can be conducted about the properties of 

specified systems and the correctness of design decisions. Computing 

systems may be modeled in VDM-SL at a higher level of abstraction 

than is achievable using programming languages, allowing the analysis 

of designs and identification of key features, including defects, at an 

early stage of system development. Models that have been validated can 

be transformed into detailed system designs through a refinement 

process. The language has a formal semantics, enabling proof of the 

properties of models to a high level of assurance. It also has an 

executable subset, so that models may be analysed by testing and can be 

executed through graphical user interfaces, so that models can be 

evaluated by experts who are not necessarily familiar with the modeling 

language itself. The term "VDM" is sometimes used a little carelessly to 

mean the specification language only. 

 

 History of VDM 
 

VDM's origins lie in the research on formal semantics of programming 

languages at IBM's Vienna Laboratory in the 1960s and 70s, including 

the VDL and Meta-IV notations. VDM is their modern descendent, now 



CIT432 SOFTWARE ENGINEERING II 

92 

 

 

 

 

used well beyond the bounds of language semantics in industrial 

systems development as well as academic research. The first version of 

the language was called the Vienna Definition Language (VDL). The 

VDL was essentially used for giving operational semantics descriptions 

in contrast to the VDM - Meta-IV which provided denotational 

semantics. Towards the end of 1972, the Vienna group again turned their 

attention to the problem of systematically developing a compiler from a 

language definition. The overall approach adopted has been termed the 

"Vienna Development Method". The meta-language actually adopted 

("Meta-IV") is used to define major portions of PL/1 (as given in ECMA 

74 - interestingly a "formal standards document written as an abstract 

interpreter") in BEKIČ 74. 

 

The Language 
 

As a mature and accepted language which has been used in a wide 

variety of applications, VDM supports lots of features for creation of 

formal models and proofs. 

 

 Functions 
 

Functions can be defined in two ways; implicit or explicit. Both 

methods have advantages and disadvantages and are used in different 

kinds of situations. 

 

 Explicit Functions 
 

An explicitly defined function consists of already known functions, 

operators, constants and parameters. The first line of an explicit function 

definition is the signature specifying the functions name, the input 

parameters and the output. The second line starts again with the name of 

the function, followed by a pair of brackets containing names for the 

input parameters so that they can be used later on. The Greek delta ( ) is 

used as definition symbol. The equality sign (=) is not used to avoid 

confusion with predicates involving equalities (e.g. square (2
2
) = 4). 

 

 Implicit Functions 
 

An implicitly defined function does not specify how to calculate the 

solution, but what has to be calculated. The explicit definition can be 

referred to as the implementation of the implicit specification. The most 

significant reason to give an implicit specification is simplicity. Implicit 

definitions are mostly shorter than explicit ones. For example it is easy 

to define a square root function implicitly, but it is much harder to 

implement an algorithm to approximately calculate it. However it is not 

always easier to give an implicit definition. The implicit specification of 



CIT432 SOFTWARE ENGINEERING II 

93 

 

 

 

 

the algorithm for the UK‘s income tax is not really shorter than the 

actual implementation. Another reason to give an implicit definition is 

that they are easier to understand. What the square root function does is 

easy to understand. How it is done is much more complicated and in 

many cases also unimportant. A big advantage of implicit definitions is 

that they can not only yield a result for single values, but that it is also 

possible to evaluate the range of plausible results. The danger of implicit 

with implicit specifications is, that they have to be very exact. The 

square root of a function can be either negative or positive. An implicit 

definition has to deal with this. It is only  "correct" if it defines all 

properties the user want's to rely on. The implicit definition of a function 

starts similar to an explicit one. The first line of the specification is the 

signature: names are given to argument and result and the names are 

followed by the type. Names are given as link to pre- and post- 

conditions. The second contains the precondition and the third one the 

postcondition. Pre- and post-conditions are arbitrary complex, boolean- 

valued functions, specifying the valid input values respectively the 

possible output. Since the possible input values for an implicit defined 

function are limited to values fulfilling the precondition, such functions 

can be seen as partial functions. 

 

 Features of VDM 
 

The toolkit has lots of useful features from syntax checking to code 

generation: 

 

 Syntax checking: The syntax-checker verifies whether the syntax 

of the selected files matches the VDM++ language specifications. 

If the check passes, it gives access to the other features of 

VDMTools. 

 Type checking: The type-checker tests mis-uses of values and 

operators and can also show places, where runtime errors may 

occur. 

 Code generation: VDMTools is able to generate a fully 

executable code for about 95% of all VDM++ constructs. Code 

generation is available for Java and C++. 

 Specification manager: A manager-window displays all classes 

and files in the specification. It also shows the status for each file. 

 Interpreter and Debugger: VDMTools allows the execution of 

all executable VDM++ constructs. Debugging is also supported. 

 Integrity examiner: It extends the static checking capabilities of 

VDM++. The tool scans through all sources to find possible 

inconsistencies or integrity violations. The examiner creates 

expressions which should evaluate to be true. If they evaluate to 

be false, there may be a problem. 



CIT432 SOFTWARE ENGINEERING II 

94 

 

 

 

 

 Rose-VDM++ Link: The Rational-Rose-Link provides a bi- 

directional link between Rational Rose (UML) and the Toolbox 

(VDM++). 

 Java to VDM++ Translator: It is possible to generate a VDM++ 

specification from a Java application. The generated model can 

be examined at VDM++ level. 

 Several input types: Models for VDMTools can be written either 

with Microsoft Word (RTF) or in Latex. Plain text is also 

possible but is not recommended. 

 

 Structuring 
 

The main difference between the VDM-SL and VDM++ notations are 

the way in which structuring  is dealt with. In VDM-SL  there is a 

conventional modular extension whereas VDM++ has a traditional 

object-oriented structuring mechanism with classes and inheritance. 

 

 Structuring in VDM-SL 
 

In the ISO standard for VDM-SL, there is an informative annex that 

contains different structuring principles. These all follow traditional 

information hiding principles with modules and they can be explained 

as: 

 

 Module naming: Each module is syntactically started with the 

keyword module followed by the name of the module. At the end 

of a module the keyword end is written followed again by the 

name of the module. 

 Importing: It is possible to import definitions that have been 

exported from other modules. This is done in an imports section 

that is started off with the keyword imports and followed by a 

sequence of imports from different modules. Each of these 

module imports is started with the keyword from followed by the 

name of the module and a module signature. The module 

signature can either simply be the keyword all indicating the 

import of all definitions exported from that module, or it can be a 

sequence of import signatures. The import signatures are specific 

for types, values, functions and operations and each of these are 

started with the corresponding keyword. In addition these import 

signatures name the constructs that there is a desire to get access 

to. In addition optional type information can be present and 

finally it is possible to rename each of the constructs upon 

import. Type one needs also to use the keyword structure if one 

wishes to get access to the internal structure of a particular type. 

 Exporting: The definitions from a module that one wish other 

modules  to  have  access  to  are  exported  using  the  keyword 



CIT432 SOFTWARE ENGINEERING II 

95 

 

 

 

 

exports followed by an exports module signature. The exports 

module signature can either simply consist of the keyword all or 

as a sequence of export signatures. Such export signatures are 

specific for types, values, functions and operations and each of 

these are started with the corresponding keyword. In case one 

wishes to export the internal structure of a type, the keyword 

structure must be used. 

 More exotic features: In earlier versions of the VDM-SL tools, 

there were also support for parameterised modules and 

instantiations of such modules. However, these features were 

taken out of VDMTools around 2000 because they were hardly 

ever used in industrial applications and there were substantial 

number of tool challenges with these features. 

 

 Structuring in VDM++ 
 

In VDM++ structuring are done using classes and multiple inheritance. 

The key concepts are: 

 

 Class: Each class is syntactically started with the keyword class 

followed by the name of the class. At the end of a class, the 

keyword end is written followed again by the name of the class. 

 Inheritance: In case a class inherits constructs from other 

classes, the class name in the class heading can be followed by 

the keywords is subclass, followed by a comma-separated list of 

names of superclasses. 

 Access modifiers: Information hiding in VDM++ is done in the 

same way as in most object-oriented languages using access 

modifiers. In VDM++ definitions are per default private but in 

form of all definitions, it is possible to use one of the access 

modifier keywords: private, public and protected. 

 

 Tool Support 
 

A number of different tools support VDM: 

 

 VDMTools are the leading commercial tools for VDM and 

VDM++, owned, marketed, maintained and developed by CKS 

Systems, building on earlier versions developed by the Danish 

Company, IFAD. The full versions include automatic code 

generation for Java and C++, dynamic link library and CORBA 

support. 

 Overture is a community-based open source initiative aimed at 

providing freely available tool support for VDM++ on top of the 

eclipse  platform.   Its  aim  is  to  develop   a  framework  for 



CIT432 SOFTWARE ENGINEERING II 

96 

 

 

 

 

interoperable tools that will be useful for industrial application, 

research and education. 

 SpaceBox: from Adelard, it provides syntax checking, some 

simple semantic checking, and generation of a LaTeX file 

enabling specifications to be printed in mathematical notation. 

This tool is freely available but it is not being further maintained. 

 LaTexand LaTeX2e macros are available to support the 

presentation of VDM models in the ISO Standard Language's 

mathematical syntax. They have been developed and are 

maintained by the National Physical Laboratory in the UK. 

 

SELF-ASSESSMENT EXERCISE 1 
 

Outline the industrial applications of VDM. 

 

 Z Notation 
 

The Z notation is another formal method. The Z notation (formally 

pronounced /ˈzɛd/ notation), named after Zermelo-Fraenkel set theory, is 

a formal specification language used for describing and modelling 
computing systems. It is targeted at the clear specification of computer 
programs and computer-based systems in general. 

 

 History of Z Notation 
 

Z notation was originally proposed by Abrial in 1977 with the help of 

Steve Schuman and Bertrand Meyer. It was developed further at the 

Programming Research Group at Oxford University, where Abrial 

worked in the early 1980s, having arrived at Oxford in September 1979. 

Abrial answers the question "Why Z?" with "Because it is the ultimate 

language. 

 

 Usage and Notation 
 

Z is based on the standard mathematical notation used in axiomatic set 

theory, lambda calculus, and first-order predicate logic. All expressions 

in Z notation are typed, thereby avoiding some of the paradoxes of naive 

set theory. Z contains a standardised catalog (called the mathematical 

toolkit) of commonly used mathematical functions and predicates. 

Although Z notation (just like the APL Language,) uses many non- 

ASCII symbols, the specification includes suggestions for rendering the 

Z notation symbols in ASCII and in Latex. 

 

SELF-ASSESSMENT EXERCISE 2 

 

What is Z notation targeted at? 



CIT432 SOFTWARE ENGINEERING II 

97 

 

 

 

 

4.0    CONCLUSION 
 

In the history of formal methods, the Vienna Development Method is 

one of the longest established formal methods. During its long lifetime, 

many different tools, standards and formalisations arose and 

disappeared. The most popular tool for VDM today (VDMTools) is a 

rather useful tool for development of formal models in VDM++ or 

VDM-SL. The code creation features of VDMTools for Java and C++ 

are very helpful and work properly. Syntax- and type-checking ensure 

syntactically correct models and the integrity-examiner provides 

integrity-conditions which have to be proven or at least observed. The 

Vienna Development Method has a great community. Z notation is 

another good formal method in use. Notation is based on the standard 

mathematical notation used in axiomatic set theory, lambda calculus, 

and first-order predicate logic. All expressions in Z notation are typed, 

thereby avoiding some of the paradoxes of naive set theory. 

 

11.0   SUMMARY 
 

In this unit, two formal methods namely; the Vienna Development 

Method and the Z notation were treated. We discussed that though there 

are many different approaches of formalisation, one of the longest 

established formal methods for development of computer-based systems 

is VDM; the Vienna Development Method. The Vienna Development 

Method (VDM) is a collection of techniques for the modeling, 

specification and design of computer-based systems. We also explained 

that Z notation is another good formal method that is widely used for 

development of computer-based system. 

 

12.0  TUTOR-MARKED ASSIGNMENT 
 

1. Differentiate  between  the  explicit  functions  and  the  implicit 

functions 

2. Trace the history of VDM 
3. List and explain the uses of any five features in the toolkit of 

VDM 

4. Differentiate between structuring in VDM-SL and structuring in 

VDM++. 



CIT432 SOFTWARE ENGINEERING II 

98 

 

 

 

 

7.0 REFERENCES/FURTHER READING 
 

Bicarregui, J.C.; Fitzgerald, J.S.; Lindsay, P.A.; Moore, R. & Ritchie, B. 

Proof in VDM: a Practitioner's Guide. 

 

Bjørner, D. & Cliff, B. J. (1978). The Vienna Development Method: 

The Meta-Language. Lecture Notes in Computer Science 61. 

Berlin, Heidelberg, New York: Springer. 

 

Bjørner, D. & Jones, C.B. (1982). Formal Specification and Software 

Development. Prentice Hall International. 

 

Dawes, J. (1991). The VDM-SL Reference Guide. Pitman. 

 

Jones, C. B. (1986). Systematic Software Development Using VDM (2nd 

ed.). Prentice-Hall International. 

 

Jones,  C.B.  (1990).  Systematic  Software  Development  using  VDM. 

Prentice Hall. 

 

O'Regan, G. (2006). Mathematical Approaches to Software Quality. 

London: Springer. 



CIT432 SOFTWARE ENGINEERING II 

101 

 

 

 

 

UNIT 3 SOFTWARE PROJECT MANAGEMENT 
 

CONTENTS 
 

1.0 Introduction 

2.0 Objectives 

 Main Content 

 Definition of Software Project Management 

 Project Management Tools 

 Brainstorming 

 Fishbone Diagram 

 Project Path Analysis 

 Gantt Chart 

 Project Management Process 

 Agree Precise Specification for the Project 

 Plan the Project 
 Communicate the Project Plan to your Project 

Team 

 Agree and Delegate Project Actions 

 Manage and Motivate 

 Check, Measure, Monitor and Review Project 

Progress 

 Complete Project 

 Project Follow-Up 

 Project Management Methodologies 

 Definitions 

 Rational Unified Process Methodology (RUP) 

 Structured System Analysis and Design 

Methodology (SSADM) 

 Crystal Clear Methodology 

 Software Project Management Techniques 

 Constructive Cost Model 

 Project Management Body of Knowledge 

(PMOBK) 

 Milestone Trend Analysis (MTA) 

 Earned Value (EV) Management 

 Critical Path 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

 INTRODUCTION 
 

This unit will discuss the rules, processes and tools for project planning 

and management. A project is a temporary endeavour undertaken to 

create a unique product or service. It is a specific, finite activity that 

produces an observable and measurable results under preset 



CIT432 SOFTWARE ENGINEERING II 

100 

 

 

requirements. Every project requires some preparation to achieve a 

successful outcome, so every project would probably be done better by 

using a few project management methods somewhere in the process. 

Project management methods can help in the planning and managing of 

all sorts of tasks, especially complex activities. There exist numerous 

project management methodologies and techniques in the world. This 

unit however aims to make a selection and present an overview of the 

commonly used software project management methodologies and 

techniques. Their applications, advantages and disadvantages are 

discussed as well as their relation to each other. The methodologies 

RUP, SSADM, Crystal Clear are discussed, as well as the techniques 

PMBOK, COCOMO, MTA, EV and Critical path. 

 

2.0    OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 describe project management 

 explain the project management tools 

 discuss the project management process 

 explain project management methodologies 

 describe the software project management techniques. 

 

 MAIN CONTENT 
 

 Definition of Software Project Management 
 

 Definitions 
 

Project management can be defined as the process of planning, 

organising, staffing, directing and controlling the production  of 

software. Project management can also be said to mean the art of 

planning, organising, directing and controlling of resources for a finite 

period of time to complete specific goals and objectives. 

 

Project Manager  

The person who is responsible for overseeing a project is the project manager. He is 

responsible for leading the project. Project managers have project teams working 

under them who help to achieve all the objectives of the project. 

 

 

 Project Management Tools 
 

Here, we shall examine four commonly used tools in project planning 

and management, namely: Brainstorming, Fishbone Diagrams, Critical 



CIT432 SOFTWARE ENGINEERING II 

101 

 

 

Path Analysis Flow Diagrams, and Gantt Charts. 

 

 Brainstorming 
 

Brainstorming is usually the first crucial creative stage of the project 

management and project planning process. Unlike most project 

management skills and methods, the first stage of the brainstorming 

process is ideally a free-thinking and random technique. Consequently, 

it can be overlooked or under-utilised because it is not a natural 

approach for many people whose main strengths are in systems and 

processes. Consequently, this stage of the project planning process can 

benefit from being facilitated by a team member who is capable of 

managing such session, specifically to help organised people to think 

randomly and creatively. 

 

 Fishbone Diagrams 
 

Fishbone diagrams are chiefly used in quality management fault- 

detection, and in business process improvement, especially in 

manufacturing and production, but the model is also very useful in 

project management planning and task management generally. Within 

project management, fishbone diagrams are useful for early planning, 

notably when gathering and organising factors, for example during 

brainstorming. Fishbone diagrams are very good for identifying hidden 

factors which can be significant in enabling larger activities, resources 

areas, or parts of a process. Fishbone diagrams are not good for 

scheduling or showing interdependent time-critical factors. 

 

Fishbone diagrams are also called 'cause and effect diagrams' and 

Ishikawa diagrams,  after Kaoru Ishikawa (1915-89),  a Japanese 

professor who specialised in industrial quality management and 

engineering. He devised the fishbone diagram technique in the 

1960s.The diagram looks just like a fish's skeleton with the problem at 

its head and the causes for the problem feeding into the spine. 

 



CIT432 SOFTWARE ENGINEERING II 

100 

 

 

 
 

 

Ishikawa's diagram became known as a fishbone diagram, obviously, 

because it looks like a fishbone: 

 

 a fishbone diagram has a central spine running left to right, 

around which is built a map of factors which contribute to the 

final result (or problem) 

 for each project the main categories of factors are identified and 

shown as the main 'bones' leading to the spine 

 into each category can be drawn 'primary' elements or factors 

(shown as P in the diagram), and into these can be drawn 

secondary elements or factors (shown as S). This is done for 

every category, and can be extended to third or fourth level 

factors if necessary. 



CIT432 SOFTWARE ENGINEERING II 

103 

 

 

 

 

 

 
 

Figure 3.1:       Fishbone Diagram 
 

 
The diagram above is a very simple one. Typically fishbone diagrams 

have six or more main bones feeding into the spine. Other main category 

factors can include: environment, management, systems, training, legal, 

etc. 

 

The categories used in a fishbone diagram should make sense for the 

project. Various standard category sets exist for different industrial 

applications, however it is important that your chosen structure is right 

for your own situation, rather than taking a standard set of category 

headings and hoping that it fits. 

 

At a simple level, the fishbone diagram is a very effective planning 

model and tool - especially for 'mapping' an entire operation. Where a 

fishbone diagram is used for project planning thus, the 'effect' is shown 

as the aim, outcome or result, not a problem. 

 

 Project Critical Path Analysis (Flow Diagram or Chart) 
 

Critical Path Analysis (CPA) sounds very complicated, but it is a very 

logical and effective method for planning and managing complex 

projects. A critical path analysis is normally shown as a flow diagram,  

whose format is linear (organised in a line), and specifically a time-

line. Critical path analysis is also called critical path method (CPM). 

 

The critical path is the longest sequence of activities in a project plan which must be 

completed on time for the project to complete on due date. An activity on the critical 

path cannot be started until its predecessor activity is complete; if it is delayed for a 

day, the entire project will be delayed for a day unless the activity following the 



CIT432 SOFTWARE ENGINEERING II 

110 

 

 

delayed activity is completed a day earlier. The critical path is very useful in 

helping to manage any project. When the critical path has been identified, it can 

clearly be seen where effort cannot be compromised. If any of the activities on the 

critical path change, the end date of the project will be affected 

A commonly used tool within CPA is PERT 

(Program/Programme/Project Evaluation and Review Technique) 

which is a specialised method for identifying related and 

interdependent activities and events, especially where a big project 

may contain hundreds or thousands of connected elements. A PERT 

chart is a project management tool that provides a graphical 

representation of a project's timeline. It is a technique that is used to 

estimate the accurate time it would take to complete a given activity. 

PERT is not normally relevant in simple projects, but any project 

of considerable size and complexity, particularly when timings and 

interdependency issues are crucial, can benefit from the detailed 

analysis enabled by PERT methods. PERT analysis commonly feeds 

into CPA and to other broader project management systems, such as 

those mentioned here. 

 

 

https://www.google.com/url?sa=i&url=https://www.investopedia.com/terms/p/pert-chart.asp&psig=AOvVaw1ada1N4S8LmY0lxzcHISWd&ust=1600795999539000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCNj2ssuE_OsCFQAAAAAdAAAAABAD


CIT432 SOFTWARE ENGINEERING II 

105 

 

 

 

 

 

Critical path analysis flow diagrams are very good for showing 

interdependent factors whose timings overlap or coincide. They 

also enable a plan to be scheduled according to a timescale. CPA 

flow diagrams also enable costing and budgeting,  although not quite 

as easily as Gantt charts (below), and they also help planners to 

identify causal elements, although not quite so easily as fishbone 

diagrams in figure 3.1 above. 

Critical Path Method (CPM) is defined as the way to predict work duration by 

using network analysis. CPM is a set of practices and techniques used rather in 

complex projects to identify and sequence the activities (critical path) that have the 

highest impact on the project‘s due-date, to schedule time required for their 

completion, and to establish the predecessor-successor relationship between the 

activities. 

 

This activity network diagram shows three possible paths to do the project from start 

till completion. The green, yellow and red arrows indicate how the activities need to 

be sequenced in each respective path. 

 

 

Creating Critical Path Analysis 
 



CIT432 SOFTWARE ENGINEERING II 

110 

 

 

As an example, the project is a simple one; making a fried 

breakfast. First note down all the issues (resources and activities in a 

rough order), again for example: 

 

 Assemble crockery and utensils, assemble ingredients, 

prepare equipment, make toast, fry sausages and eggs, grill 

bacon and tomatoes, lay table, warm plates, serve. 

 

Note that some of these activities must happen in parallel - and they 

are crucially interdependent. This means, if you tried to make a fried 

breakfast by doing one task at a time, and one after the other, 

things would go wrong. Certain tasks must be started before others, and 

certain tasks must be completed in order for others to begin. The plates 

need to be warming while other activities are going on. The toast 

needs to be done while the sausages are frying, and at the same time 

the bacon and sausages are under the grill. The eggs need to be fried 

last. A critical path analysis is a diagrammatical representation of what 

needs done and when. Timescales and costs can be applied to each 

activity and resource. Here is the critical path analysis for making a 

fried breakfast: 

 

 This critical path analysis example below shows just a few 

activities over a few minutes. Normal business projects would 

see the analysis extending several times wider than this 

example, and the time line would be based on weeks or months. 

It is possible to use MS Excel or a similar spreadsheet to 

create a critical path analysis, which allows financial totals and 

time totals to be planned and  tracked. Various specialised  

project  management software enable the same thing. Beware, 

however, of spending weeks on the intricacies of computer 

modelling, when in the early stages especially, a carefully hand 

drawn diagram - which requires no computer training at all - 

can put 90% of the thinking and structure in place and available 

for just a tiny fraction of the price of all the alternatives. 
 

 

 

Figure 3.2:       Critical Path Analysis Flow for Making a Fried Breakfast 



CIT432 SOFTWARE ENGINEERING II 

107 

 

 

 

 
 Gantt Charts 

 

Gantt charts (commonly wrongly called gant charts) are extremely 

useful project management tools. The Gantt chart is named after US 

engineer and consultant Henry Gantt (1861-1919), who devised the 

technique in the 1910s. Gantt charts are excellent models for scheduling 

and for budgeting, and for reporting and presenting and communicating 

project plans and progress easily and quickly, but as a rule Gantt charts 

are not as good as a critical path analysis flow diagram for identifying 

and showing interdependent factors, or for 'mapping' a plan from and/or 

into all of its detailed causal or contributing elements. 

 

You can construct a Gantt chart using MS Excel or a similar 

spreadsheet. Every activity has a separate line. Create a time-line for the 

duration of the project (the breakfast example shows minutes, but 

normally you would use weeks, or months for very big long-term 

projects). You can colour code the time blocks to denote type of activity 

(for example, intense, watching brief, directly managed, delegated and 

left-to-run, etc.) You can schedule review and insert break points. At the 

end of each line you can show as many cost columns for the activities as 

you need. The breakfast example shows just the capital cost of the 

consumable items and a revenue cost for labour and fuel. A Gantt chart 

like this can be used to keep track of progress for each activity and how 

the costs are running. You can move the time blocks around to report on 

actuals versus planned, and to re-schedule, and to create new plan 

updates. Costs columns can show plan and actuals and variances, and 

calculate whatever totals, averages, ratios, etc., that you need. Gantt 

charts are probably the most flexible and useful of all project 

management tools, but remember they do not very easily or obviously 

show the importance and inter-dependence of related parallel activities, 

and they will not obviously show the necessity to complete one task 

before another can begin, as a critical path analysis will do, so you may 

need both tools, especially at the planning stage, and almost certainly for 

large complex projects. 
 

 
 

 

 

 

 

 

 

 

 

 

 



CIT432 SOFTWARE ENGINEERING II 

110 

 

 

 

Example of Gantt chart is as follows: 

 

Figure 3.3: Sample Gantt Chart for Toasting Bread 
 

 
A wide range of computerised systems/software now exists for project 

management and planning, and new methods continue to be developed. 

Project planning tools naturally become used also for subsequent project 

reporting, presentations, etc., and you will make life easier for everyone 

if you use formats that people recognise and find familiar. 

 

SELF-ASSESSMENT EXERCISE 1 

 

1. How fishbone is diagram a tool for project planning and project 

planning? 

2. Brainstorming is usually the first crucial creative stage of the 

project management and project planning process. Why? 
 
 
 

 

 Project Management Process 
 

Project management process is an administration process for the planning and 

control of the services or the implementation of a project. The results of one of these 

processes are: delivery of the project product; achievement of the project 

objectives; documentation of the learning processes. 

 

The following are the processes in software project management: 

 

 Agreed precise specification for the project 

 Plan the project 

 Communicate the project plan to your project team 

 Agree and delegate project actions. 

 Manage and motivate 

 Check, measure, monitor, review project progress 



CIT432 SOFTWARE ENGINEERING II 

109 

 

 

 Complete project 

 Project follow-up. 

 

 Agreed Precise Specification for the Project (Terms of Reference) 
 

The project specification should be an accurate description of what the 

project aims to achieve, and the criteria and flexibilities involved, its 

parameters, scope, range, outputs, sources, participants, budgets and 

timescales. It should also be specified with superiors, or with relevant 

authorities. The specification may involve several drafts before it is 

agreed. A project specification is essential because it creates a 

measurable accountability for anyone wishing at any time to assess how 

the project is going, or its success on completion. Project terms of 

reference also provide an essential discipline and framework to keep the 

project on track, and concerned with the original agreed aim and 

parameters. A properly formulated and agreed project specification also 

protects the project manager from being held to account for issues that 

are outside the original scope of the project or beyond the project 

manager's control. 

 

This is the stage to agree on special conditions or exceptions with 

those in authority. Once you have published the terms of reference 

you have created a very firm set of expectations by which you will be 

judged. So if you have any concerns, or want to renegotiate, this is 

usually the time to do that. For big projects, the terms of reference 

may require several weeks to produce and agreed on. Most normal 

business projects however require a few days to think and consult in 

order to produce a suitable project specification. Establishing and 

agreeing on a project specification is an important process even if your 

task is simple a one. 
 

A template for a project specification: 

 

 describe purpose, aim and deliverables 

 state  parameters  (timescales,  budgets,  range,  scope,  territory, 

authority) 

 state people involved and the way the team will work (frequency 

of meetings, decision-making process) 

 establish 'break-points' at which to review and check progress, 

and how progress and results will be measured. 

 

 Plan the Project 
 

During this period, plan the various stages and activities of the project. 

Where possible (and certainly where necessary), involve your team in 

the planning. A useful tip is to work backwards from the end, 

identifying all the things that need to be put in place and done, in reverse 

order. Additionally, from the bare beginnings of the project, use 

brainstorming (noting ideas and points at random - typically with a 



CIT432 SOFTWARE ENGINEERING II 

110 

 

 

project team), to help gather points and issues and to explore 

innovations and ideas. Fishbone diagrams (diagrams used  for 

identifying hidden factors which can be significant in enabling larger 

activities, resources areas, or parts of a process) are also useful for 

brainstorming and identifying causal factors which might otherwise be 

forgotten. 

 

For complex projects, or when you lack experience of the issues, involve 

others in the brainstorming process. Thereafter is a question of putting 

the issues in the right order, and establishing relationships and links 

between each issue. Complex projects will have a number of activities 

running in parallel. Some parts of the project will need other parts of the 

project to be completed before they can begin or progress. Such 

'interdependent' parts of a project need particularly careful consideration 

and planning. Some projects will require a feasibility stage before the 

completion of a detailed plan. Gantt charts and critical path analysis 

flow diagrams are two commonly used tools for detailed project 

management planning, enabling scheduling, costing and budgeting and 

other financials, and project management and reporting. 

 

Project contingency planning is also part of the project plan. Planning 

for and anticipating the unforeseen, or the possibility that things may not 

go as expected, is called 'contingency planning'. Contingency planning 

is vital in any task when results and outcomes cannot be absolutely 

guaranteed. Often a contingency budget needs to be planned as there are 

usually costs associated. Contingency planning is about preparing fall- 

back actions, and making sure that leeway for time, activity and resource 

exists to rectify or replace first-choice plans. A simple contingency plan 

for the fried breakfast would be to plan for the possibility of breaking 

the yolk of an egg, in which case spare resource (eggs)  should be 

budgeted for and available if needed. It may be difficult to anticipate 

precisely what contingency to plan for in complex long-term projects, in 

which case simply a contingency budget is provided, to be allocated 

later when and if required. 

 

 Communicate the Project Plan to your Team 
 

This serves two purposes: it informs people what is happening, and it 

obtains essential support, agreement and commitment. If your project is 

complex and involves a team, then you should involve the team in the 

planning process to maximise buy-in, ownership, and thereby 

accountability. Your project will also benefit from input and 

consultation from relevant people at an early stage. 

 

Also consider how best to communicate the aim and approach of your 

project to other people in your organisation and wider network. Your 

project 'team' can extend more widely than you might first imagine. 

Consider all the possible 'stakeholders' - those who have an interest in 

your project and the areas it touches and needs to attract support or 



CIT432 SOFTWARE ENGINEERING II 

111 

 

 

tolerance. Involvement and communication are vital for cooperation 

and support. Failing to communicate to people (who might have no great 

input, but whose cooperation is crucial) is a common reason for arousing 

suspicion and objections, defensiveness or resistance. 

 

 Agree and Delegate Project Actions 
 

Having identified those responsible for each activity in your plan, the 

next action is to clearly describe all the activities, including all relevant 

parameters, timescales, costs, and deliverables. Use of proper delegation 

methods is vital for successful project management involving teams. 

Delegated tasks may fail if they have not been explained clearly, agreed 

with the other person, or supported and checked while in progress. So 

publish the full plan to all in the team, and consider carefully how to 

delegate medium-to-long-term tasks in light of team members' forward- 

planning capabilities. Long-term complex projects need to be planned in 

more detail and great care must be taken in delegating and supporting 

them. 
 

 Manage, Motivate, Inform, Encourage, Enable the 

Project Team 
 

As a project manager, you should be able to manage the team and 

activities in meetings, communicate, support, and help with decisions 

(but not making them for people who can make them for themselves). 

'Praise loudly; blame softly‘; a wonderful maxim attributed to Catherine 

the Great. One of the big challenges for a project manager is deciding 

how much freedom to give for each delegated activity. Tight parameters 

and lots of checking are necessary for inexperienced people who like 

clear instructions, but this approach is the kiss of death to experienced, 

entrepreneurial and creative people. They need a wider brief, more 

freedom, and less checking. Manage these people by the results they get 

- not how they get them. Look out for differences in personality and 

working styles in your team. Misunderstanding personal styles can get 

in the way of team cooperation. Your role here is to enable and translate. 

Face to face meetings, when you can bring team members together, are 

generally the best way to avoid issues and relationships becoming 

personalised and emotional. Communicate progress and successes 

regularly to everyone. Give the people in your team the plaudits, 

particularly when someone high up expresses satisfaction - never accept 

plaudits yourself. Conversely, you must take the blame for anything that 

goes wrong and never 'dump' (your problems or stresses) on anyone in 

your team. As project manager, any problem is always ultimately down 

to you anyway. Look out for signs of stress and manage it accordingly. 

A happy positive team with a basic plan will outperform a miserable 

team with a brilliant plan, every time. 

 

 Check, Measure, and Review Project Performance 
 



CIT432 SOFTWARE ENGINEERING II 

110 

 

 

Check the progress of activities against the plan. Review performance 

regularly and at the stipulated review points, and confirm the validity 

and relevance of the remainder of the plan. Adjust the plan if necessary 

in light of performance, changing circumstances, and new information, 

but remain on track and within the original terms of reference. Be sure 

to use transparent, pre-agreed measurements when judging performance. 

(This shows how essential it is to have these measures in place and 

clearly agreed before the task begins.) Identify, agree and delegate new 

actions as appropriate. Inform team members and those in authority 

about developments, clearly, concisely and in writing. Also plan team 

review meetings and stick to the monitoring systems you established. 

Probe the apparent situations to get at the real facts and figures. Analyse 

causes and learn from mistakes. Identify reliable advisors and experts in 

the team and use them. Keep talking to people, and make yourself 

available to all. 
 

 Complete Project; Review and Report on Project 
 

At the end of your successful project, hold a review meeting with the 

team. Ensure you understand what happened and why. Reflect on any 

failures and mistakes positively, objectively, and without allocating 

personal blame. Reflect on successes gratefully and realistically. Write a 

review report, and make observations and recommendations about 

follow up issues and priorities. 

 

 Follow up - Train, Support, Measure and Report Project Results and 

Benefits 
 

Traditionally, this stage would be considered part of the project 

completion, but increasingly an emphasized additional stage of project 

follow-up is appropriate. This is particularly so in very political 

environments, and/or where projects benefits have relatively low 

visibility and meaning to stakeholders (staff, customers, investors, etc.), 

especially if the project also has very high costs, as ICT projects tend to 

do. 

 

ICT (information and communications technology) projects often are 

like this - low visibility of benefits but very high costs, and also very 

high stress and risk levels too. 

 

Project management always involves change management too, within 

which it is very important to consider the effects of the project on people 

who have to adapt to the change. There is often a training or education 

need. There will almost certainly be an explanation need, in which for 

example methods like team briefing have proved very useful. Whatever, 

when you are focused on project management, it is easy to forget 

or ignore that many people are affected in some way by the results of 

the project. Change is difficult, even when it is good and for right 

reasons. Remembering this during and at the end of your project will 



CIT432 SOFTWARE ENGINEERING II 

113 

 

 

help you achieve a project that is well received, as well as successful 

purely in project management terms. As project manager, to be at the 

end of a project and to report that the project plan has been fully met, 

on time and on budget, is a significant achievement, whatever the 

project size and complexity. The mix of skills required is such that 

good project managers can manage anything. 

 

Generally, there are five main project management processes: 

1 - Project Initiation 

Project initiation is the starting point of any project. In this process, all the activities 

related to winning a project takes place. Usually, the main activity of this phase is 

the pre-sale. 

During the pre-sale period, the service provider proves the eligibility and ability of 

completing the project to the client and eventually wins the business. Then, it is the 

detailed requirements gathering which comes next. 

During the requirements gathering activity, all the client requirements are gathered 

and analysed for implementation. In this activity, negotiations may take place to 

change certain requirements or remove certain requirements altogether. 

Usually, project initiation process ends with requirements sign-off. 

2 - Project Planning 

Project planning is one of the main project management processes. If the project 

management team gets this step wrong, there could be heavy negative consequences 

during the next phases of the project. 

Therefore, the project management team will have to pay detailed attention to this 

process of the project. 

In this process, the project plan is derived in order to address the project 

requirements such as, requirements scope, budget and timelines. Once the project 

plan is derived, then the project schedule is developed. 

Depending on the budget and the schedule, the resources are then allocated to the 

project. This phase is the most important phase when it comes to project cost and 

effort. 

3 - Project Execution 

After all paperwork is done, in this phase, the project management executes the 

project in order to achieve project objectives. 



CIT432 SOFTWARE ENGINEERING II 

110 

 

 

When it comes to execution, each member of the team carries out their own 

assignments within the given deadline for each activity. The detailed project 

schedule will be used for tracking the project progress. 

During the project execution, there are many reporting activities to be done. The 

senior management of the company will require daily or weekly status updates on 

the project progress. 

In addition to that, the client may also want to track the progress of the project. 

During the project execution, it is a must to track the effort and cost of the project in 

order to determine whether the project is progressing in the right direction or not. 

In addition to reporting, there are multiple deliveries to be made during the project 

execution. Usually, project deliveries are not onetime deliveries made at the end of 

the project. Instead, the deliveries are scattered through out the project execution 

period and delivered upon agreed timelines. 

4 - Control and Validation 

During the project life cycle, the project activities should be thoroughly controlled 

and validated. The controlling can be mainly done by adhering to the initial 

protocols such as project plan, quality assurance test plan and communication plan 

for the project. 

Sometimes, there can be instances that are not covered by such protocols. In such 

cases, the project manager should use adequate and necessary measurements in order 

to control such situations. 

Validation is a supporting activity that runs from first day to the last day of a project. 

Each and every activity and delivery should have its own validation criteria in order 

to verify the successful outcome or the successful completion. 

When it comes to project deliveries and requirements, a separate team called 'quality 

assurance team' will assist the project team for validation and verification functions. 

5 - Closeout and Evaluation 

Once all the project requirements are achieved, it is time to hand over the 

implemented system and closeout the project. If the project deliveries are in par with 

the acceptance criteria defined by the client, the project will be duly accepted and 

paid by the customer. 

Once the project closeout takes place, it is time to evaluate the entire project. In this 

evaluation, the mistakes made by the project team will be identified and will take 

necessary steps to avoid them in the future projects. 



CIT432 SOFTWARE ENGINEERING II 

115 

 

 

During the project evaluation process, the service provider may notice that they 

haven't gained the expected margins for the project and may have exceeded the 

timelines planned at the beginning. 

In such cases, the project is not a 100% success to the service provider. Therefore, 

such instances should be studied carefully and should take necessary actions to avoid 

in the future. 

 

 

SELF-ASSESSMENT EXERCISE 2 
 

1. Why must a project manager first draw a precise specification for 

any software project? 

2. Do you think it is necessary for the project manager to follow up 

- train, support, measure and report project results and benefits to 

stakeholders  (staff,  customers,  investors). What  are your 

reasons? 

 

 Project Management Methodologies 
 

Definition 
 

a. Methodology: A codified set of recommended practices, 

sometimes accompanied by training materials, formal educational 

programs, worksheets and diagramming tools. 

b. Thick methodology: A methodology that includes a large amount 

of formal process paperwork and documentation 

c. Thin methodology: A methodology that eschews formal process 

paperwork and documentation commonly used software 

development methodologies 

 

Let us at this point discuss some methodologies. Methodologies such as 

the rational unified process (RUP), Structured Systems Analysis and 

Design Methodology (SSADM), PRINCE2 extreme programming and 

others are considered thick methodologies. When discussing each of the 

methodologies, we shall however focus on the management and 

business focus of the methodology. 

 

 Rational Unified Process (RUP) Methodology 
 

In RUP, an iterative approach is used. A software product is designed 

and built in a succession of incremental iterations. Each iteration 

includes some, or most, of the development disciplines (requirements, 

analysis, design, implementation, testing, and so on). Figure 3.4 shows 

one iteration of a RUP project in a graphical way. One of the major 

differences between RUP and other methodologies like SSADM is that 

RUP doesn't use a waterfall approach for software development. The 

phases of requirements, analysis, design, implementation, integration 



CIT432 SOFTWARE ENGINEERING II 

110 

 

 

and testing are not done in strict sequence. RUP is a thick methodology; 

the whole software design process is described with high detail. RUP is 

hence particularly applicable on larger software projects. The RUP 

methodology is general enough to  be used out of the  box, but the 

modular nature of RUP. RUP is designed and documented using unified 

Modeling Language (UML). This also makes it easy to adapt the 

methodology to the special needs of a single project or company. The 

Rational unified Process (RUP) is a software design methodology 

created by the Rational Software Company. The Rational Software 

Company was acquired by IBM in 2003. 
 
 





CIT432 SOFTWARE ENGINEERING II 

112 

 

 

 

 

 

 

 
 

Figure 3.4: The Iterative Approach to Software Development [RUP- 

IMG] 
 

 
Application Area 

 

Due to the  modular nature of RUP, it can be used for  all sorts of 

software projects. It is even possible to use RUP for non-software 

projects. However, because of the complexity of the RUP methodology, 

it is used mostly for larger software projects. 

 

Advantages 
 

a. The iterative approach leads to higher efficiency. Testing takes 

place in each iteration, not just at the end of the project life cycle. 

This way, problems are noticed earlier, and are therefore easier 

and cheaper to resolve. When using a waterfall approach, it can 

happen that, for example, software programmers have to wait for 

the completion of the design phase before starting implementing 

and integrate the design. Designing and building a software 

project with an iterative approach solves this problem. Integration 

and  implementation  will  not  only  happen  at  the  end  of  the 



CIT432 SOFTWARE ENGINEERING II 

113 

 

 

 

 

project, but at every iteration. This saves time, since more team 

members can work more. 

b. Managing changes in software requirements will be made easier 

by using RUP. Unless a software project is very small, it is nearly 

impossible to define all the software requirements at the 

beginning of a project. It will almost always take more than one 

step to know what the final software product will look like, for 

the customer as well as for the project members. Developing with 

iterations makes this process of changing, requirements, that 

often leads to missed schedules and dissatisfied customers, less 

troublesome. 

c. RUP itself is software, too, and is distributed in an electronic and 

online form. Team members don't need to leave their computers 

for RUP related activities. No more searching in big, dusty books. 

All information about the software development methodology is 

available at the project members' fingertips. Also, the newest 

version of RUP is always present on the computer of each team 

member. And even more important, it makes sure that every team 

member is using the same version of RUP. RUP is designed and 

documented using UML, in an object oriented way. This makes it 

easy to adapt RUP to the special needs of a single project or 

organisation. 

 

Disadvantages 
 

a. RUP is a commercial product, no open or free standard. Before 

RUP can be used, the RUP has to be bought from IBM, as an 

electronic software and documentation package (a trial version 

can be downloaded from the IBM website, however). The RUP 

only exists in an electronic form, which can sometimes limit its 

use. 

b. RUP, as said before, describes the whole software design process 

with high detail; it is a very complex methodology, difficult to 

comprehend for both project managers and project members. 

Therefore, it is not the most appropriate software design 

methodology for most small projects. 

c. Starting to use RUP as software development methodology is 

difficult, everyone participating in the project will have to learn 

working with RUP. 

 

 Structured Systems Analysis and Design Methodology 

(SSADM) 
 

SSADM sets out a cascade or waterfall view of systems development, in 

which there are a series of steps, each of which leads to the next step as 

shown in Figure 3.5. It was commissioned by the Central Computing 

and Telecommunications Agency (CCTA) in a bid to standardise the 

many and varied IT projects being developed across government 



CIT432 SOFTWARE ENGINEERING II 

114 

 

 

departments. Structured Systems Analysis and Design Methodology 

(SSADM) is a widely used computer application development method 

in the UK. Its use is often specified as a requirement for government 

computing projects. Today, it is increasingly being adopted by the 

public sector in Europe. SSADM is an open standard, which means it is 

freely available for use in industry and many companies offer 

support, training and Computer Aided Software Engineering (CASE) 

tools for it. The series of process in SSADM is shown below: SSADM 

is a thick methodology of software management. 
 

 

 

 
 

Figure 3.5:        SSADM Process Model SSADM 
 

 
Feasibility Study 

 

The feasibility study consists of one single stage, which involves 

conducting a high level analysis of a business area to determine whether 

a system can cost effectively support the business requirements. In the 

feasibility study, an overview Data Flow Diagram (DFD) is produced 

together with a high level Logical Data Structure (LDS). At this stage, 

the DFD will represent the existing system and the LDS may be 

incomplete and contain unresolved many-to-many relationships. 

 

Requirements Analysis 

 

 Investigation of the current environment: During this stage, 

the systems requirements are identified and the current business 



CIT432 SOFTWARE ENGINEERING II 

115 

 

 

 

 

environment is modelled in terms of the processes carried out and 

the data structures involved. In this, DFDs and LDSs are used to 

produce detailed logical models of the current system. 

 Business Systems Options (BSO): During this stage, up to six 

business systems options are produced and presented and one of 

these options (chosen option) is adopted and refined. DFDs and 

LDSs are produced to support each business system option and 

the final chosen option. The transition from the former stage to 

this stage is a key part of SSADM: this is where we move from a 

logical model of the current system to a logical model of the 

required system. This means the DFDs and LDSs have to be 

refined to cater for new or changed requirements. 

 

Requirements Specification 
 

The requirements specification consists of a single stage which involves 

further developing the work carried out in the Requirements Analysis: 

detailed functional and non-functional requirements are identified and 

new techniques are introduced to define the required processing and data 

structures. 

 

Logical Systems Specification 
 

a. Technical system options: In this stage, up to six technical 

options (specifying the development and implementation 

environments) are produced, one being selected. 

b. Logical design: In this stage, the logical design of update 

enquiry processing and system dialogues (menus etc.) are carried 

out. 

c. Physical Design: The physical design consists of a single stage in 

which the logical system specification and technical system 

specification are used to create a physical database design and a 

set of program specification. SSADM revolves around the use of 

three key techniques: 

d. Logical Data Modelling (LDM): This is the process of 

identifying, modelling and documenting the data requirements of 

a business information system. A LDM consists of a LDS and the 

associated documentation. LDSs represent Entities (things about 

which a business needs to record information) and Relationships 

(necessary associations between entities). 

e. Data Flow Modelling (DFM): This is the process of identifying, 

modeling and documenting how data flows around a business 

information system. A Data Flow Model consists of a set of 

integrated DFDs supported by appropriate documentation. DFDs 

represent processes (activities which transform data from one 

form to another), data stores (holding areas for data), external 



CIT432 SOFTWARE ENGINEERING II 

116 

 

 

 

 

entities (things which send data into a system or receive data 

from a system and finally data flows (routes by which data can 

flow). 

f. Entity/Event Modelling (EM): This is the process of 

identifying, modelling and documenting the business events 

which affect each entity and life history and appropriate 

supporting documentation. 

 

Application Area 

 

SSADM was originally developed to standardise the many and varied IT 

projects being developed across government departments. Today, 

SSADM Version 4, can be used in all kinds of analysis and design 

stages of system development. SSADM can be used practically for any 

size of project: small (1-2 persons, less than one man year), medium (4 - 

10 persons, 1-20 man years) and large projects. Furthermore, SSADM 

can be used to develop new projects, but it can also be used to maintain 

existing systems. 

 

Advantages 

 

i. As mentioned earlier, SSADM is an open standard, which means 

that it is freely available for use in industry and many companies 

that offer support, training and CASE tools for it. 

ii. SSADM divides an application development project into 

modules, stages, steps, and tasks, and provides a framework for 

describing projects in a fashion suited to manage the project. 

 

Objectives of SSADM 

 

SSADM can reduce the chances of initial requirements being 

misunderstood and of the systems functionality straying from the 

requirements through the use of inadequate analysis and design 

techniques. 

 

Disadvantages 
 

i. SSADM is a typical example of a structured methodology, which 

means that the purpose of it is to: 

ii. Formalise the requirements elicitation process to reduce the 

chances of  misunderstanding the  requirements. Introduce  best 

practice techniques to the analysis and design process. 

iii. As mentioned earlier, SSADM can reduce the chances of initial 

requirements being misunderstood and of the systems 

functionality straying from the requirements through the use of 

inadequate analysis and design techniques.  

 

However, SSADM assumes that the requirements (in the form 



CIT432 SOFTWARE ENGINEERING II 

117 

 

 

of an agreed requirements specification) will not change during 

the development of a project. Following each step of SSADM 

rigorously can be time consuming and there may be a 

considerable delay between inception and completion. 

 

 Crystal Clear Methodology 
 

The crystal clear methodology is a thin methodology. Crystal clear is a 

highly optimised way to use a small, collocated team, prioritising for 

safety in delivering a satisfactory outcome, efficiency in development, 

and habitability of the working conventions. The crystal clear 

methodology is part of the crystal family of methodologies, where every 

methodology is characterised by a colour (Clear, Yellow, Orange, Red, 

Maroon, Blue, Violet). That colour represents the number of people for 

which the methodology is suited; crystal clear is the lightest colour and 

is meant for the smallest project groups, of between two to eight people. 

Darker colours are for larger groups. Crystal clear has at its core seven 

properties that should be established for every project that wishes to 

adhere to the methodology. While all of these are desired, only the first 

three are mandatory; the other four will get the project further into the 

safety zone. These seven properties are: 

 

1. Frequent Delivery: When delivering is working, tested code to 

the actual software users once every few months (or more often, 

if possible), users will be able to deliver feedback on 

implemented requirements, sponsors will see progress and 

developers will get a morale boost. 

2. Reflective Improvement: Taking time to let the team reflect on 

what works and what does not work for the project, and 

improving the things that do not work. 
3. Osmotic Communication: Having the entire team so close 

together (if possible in the same room, otherwise in adjacent 

rooms) that people do not have to go through a lot of trouble to 

raise answer or answer questions, but can do so instantly, will 

make people work together naturally, inspect each others' 

work and pick up relevant information as if by osmosis. 

4. Personal Safety: If people feel safe to speak up without fear of 

reprisal, they can give constructive criticism on other people's 

work and admit their own mistakes, leading to honesty and 

ultimately, trust. 

5. Focus: If everybody has time to focus on their primary objectives 

for two hours a day, for two consecutive days every week, 

without any distractions that can make them lose their train of 

thought (like meetings or other work), people will be more 

focused and work will be finished quicker. 



CIT432 SOFTWARE ENGINEERING II 

118 

 

 

 

 

6. Easy Access to Expert Users: If expert users are available to the 

team, they can answer questions and deliver feedback on quality 

and design decisions. 

7. Technical Environment with Automated Tests, Configuration 

Management and Frequent  Integration: A proper  technical 

environment where testing and configuration 

management/version control tasks (like making backups and 

merging changes) do not have to be done by hand will make life 

easier for developers. 

 

Crystal clear offers several concrete procedures/techniques that can help 

establish these critical properties, but these are optional: If the team 

knows of other ways to satisfy the properties, there is nothing that stands 

in their way. In general, it can be said that crystal clear values properties 

over techniques. This also makes crystal clear a low threshold 

methodology: project groups can carry over their established methods 

and techniques which the group has either grown into or were developed 

to fit their specific situation to crystal clear, and thus will not have to 

learn a set of new ones before coming up to speed. 

 

Application Area 
 

As explained above, crystal clear is meant for project groups consisting 

of two to eight people working at the same physical location, with one 

or more expert users available. In general, this means any setting where 

the first three (but ideally, all seven) of the properties can be fulfilled are 

applicable. 

 

However, the above does not have to be strictly adhered to. All 

methodologies in the Crystal family support the stretch to fit principle, 

which states that when a potential project does not fit within the target 

methodology, the principles and practices to be carried out by the 

methodology can be stretched to fit the particular case. For example, 

teams that are significantly larger than eight people have carried out 

crystal clear successfully by stretching it to fit their needs. 

 

Advantages 

 

a. Because the seven properties are based upon behaviour that has 

been observed in successful project groups, those practicing 

crystal clear might well be on the right track to bringing the 

project to an end successfully. While this is of course no 

guarantee of  success, there  are  always other  factors  that 

contribute to or detract from a project's success. It is likely that 

these properties contain at least some quality that does indeed 



CIT432 SOFTWARE ENGINEERING II 

119 

 

 

 

 

make the difference between a successful and an unsuccessful 

project. 

b. Unlike traditional, thick methodologies like SSADM or PRINCE, 

crystal clear is flexible as to what project teams are supposed to 

do and how to do it. This is expressed in the properties over 

techniques and stretch to fit principles. In fact, crystal clear was 

explicitly designed to be usable by as many project groups as 

possible, with the least number of new techniques to learn. It 

differs in this respect even from a fellow agile methodology. 

 

Disadvantages 
 

a. One of crystal clear's major strengths is also its principal 

disadvantage: It tries to be a methodology that is applicable in as 

many cases as possible. This clearly prevents it from ever being a 

―best" methodology (like XP strives to be) 

b. Another disadvantage might be that crystal clear is still relatively 

new: Most of the principles behind the methodology are all based 

on real experiences drawn from real projects, so perhaps wider 

exposure will reveal that crystal clear indeed works ―as 

advertised". 

 

Coupling with other methodologies 
 

Because crystal clear is such a lightweight methodology, it can be 

coupled with several other methodologies to reap the benefits of both. 

This can be done in one of two ways: either by adding one or more 

techniques from the other methodology to crystal clear, or by merging 

both methodologies to practice them at the same time. As might be 

expected, the first is easier to attain than the second. 

 

SELF-ASSESSMENT EXERCISE 3 
 

1. Explain any four (4) of the seven properties of the crystal clear 

methodology 

2. Draw the SSADM Process Model. 

 

 Software Management Techniques 
 

Software management techniques are ways of efficiently acquiring 

information of a software project in a manner that is not immediately 

obvious or straightforward. These techniques can be used as an aid to 

estimate, track and evaluate different aspects of the project. Some of the 

software management techniques to be discussed include discuss 

PMBOK. COCOMO, MTA, EV and Critical Path. 



CIT432 SOFTWARE ENGINEERING II 

120 

 

 

 

 

 Constructive Cost Model (COCOMO) 
 

a. COCOMO is an empirical, algorithmic model for estimating the 

effort, schedule and costs of a software project. It was derived by 

collecting relevant data from a large number of software projects, 

then analysing the data to discover the formulae that were the 

best-fit to the observations (CCM-SWENG, p. 522). The first 

version of the COCOMO model (now known as COCOMO 81) 

was a three-level model where the levels reflected the detail of 

the analysis of the cost estimate. The first level (basic) provided 

an initial rough estimate; the second level modified this using a 

number of project and process multipliers and the most detailed 

level produced estimates for different phases of the project. 

b. COCOMO 81 makes various assumptions about the software 

development process in order to produce its estimates. The latter 

will only be somewhat accurate when the project uses the 

waterfall process model and every line of code is produced from 

scratch. It also fails to take into account that nowadays higher- 

level programming languages are employed, supported by 

various automated tools. We will not elaborate on this version 

since it has been obsoleted by COCOMO 2. COCOMO 2 

includes support for various development methodologies such as 

component-based development and prototyping,  fourth 

generation programming languages and CASE support tools. 

COCOMO 2 still consists of three levels, but these have been 

given slightly different interpretations: 

 

The early prototyping level: Size estimates are based on object points. 

These object points are a simple way of quantifying the perceived 

complexity of requirements that need to be implemented. The required 

effort is then computed by applying a simple extrapolation from the 

object points and programmer productivity. Object points are based on 

the number of screens, reports and modules in third generation 

programming languages, and can be weighed by the perceived 

complexity of the screen, report or module in question. 

 

The early design level: This level corresponds to the completion of the 

system requirements with (perhaps) some initial design. Estimates are 

based on function points, which are obtained by working out the object 

points in detail. More specifically, the total number of points is 

computed by measuring or estimating the following program features: 

external inputs and outputs, user interactions, external interfaces and 

files used by the system. The function points are then converted to 

number of lines of source code using the tables provided by the 

COCOMO model. 



CIT432 SOFTWARE ENGINEERING II 

121 

 

 

 

 

The post-architecture level: Once the system architecture has been 

designed a reasonably accurate estimate of the software size can be 

made. The estimate as this level uses a more extensive set of multipliers 

reflecting personnel capabilities, product and project characteristics 

[CCM-SWENG, p. 523{524 

 

Application Area 
 

COCOMO is a well-known empirical algorithmic cost estimation 

technique. It is well-documented, in the public domain and is supported 

by public domain and commercial tools. It has been widely used and has 

a long pedigree from its first instantiation in 1981 .The application of the 

first instantiation of the model was limited due to the rather large 

constraints on the development process. This issue has been mitigated 

by continued improvements on, and extensions of the model, resulting in 

COCOMO 2. 

 

Advantages 
 

a. Although it's hard to pinpoint the exact cost of any given project, 

one can still obtain usable data by calculating optimistic and 

pessimistic estimates. Implementation and execution of the 

model is very simple and efficient. As a result, it is supported by 

public as well as commercial tools. 

b. COCOMO is a well-known and well-documented technique. 

 

Disadvantages 
 

a. It is quite difficult to come up with satisfactory estimates for the 

size of a project when the latter still in an early stage of 

development. 

b. The use of the number of lines of source code as a measure of 

complexity is highly disputable. Even though COCOMO tries to 

take this into account by providing different tables for all major 

programming languages, there are still  lots  of inconsistencies 

such as: expressivity differences between programmers, usage of 

subroutines, general code reuse, etc. 

 

Usage in Methodologies 
 

As stated above, the COCOMO model can only be applied when the 

project in question satisfies a given number of criteria. Additionally, it is 

advisable to try out other estimation techniques in order to get a feeling 

of the accuracy of the estimates that have been obtained. 



CIT432 SOFTWARE ENGINEERING II 

122 

 

 

 

 

 Project Management Body of Knowledge (PMBOK) 
 

The project management body of knowledge (PMBOK) is an inclusive 

term that describes the sum of knowledge within the profession of 

project management (PM). As with other professions such as law, 

medicine, and accounting, the body of knowledge rests with the 

practitioners and academics that apply and advance it. The full PMBOK 

includes knowledge of proven traditional practices that are widely 

applied, as well as knowledge of innovative and advanced practices that 

have seen more limited use, and includes both published and 

unpublished material. 

 

The PMBOK framework splits the project processes into five distinct 

process groups: initiating, planning, executing, controlling and closing. 

Note that these groups do not imply that the project has to go through 

each one in this order; they are only provided in order to be able to 

structure and categorise the different project processes. PMBOK also 

identifies several project knowledge areas: integration management, 

scope management, time management, cost management, quality 

management, human resource management, communications 

management, risk management and procurement management. By using 

this twin categorisation in process groups and knowledge areas, we can 

classify project processes as shown in table 3.1. 

 

Table 3.1: Summary Table for Project Management Body of 

Knowledge (PMBOK) 
 

 

Knowledge 

Areas / Process 
Groups 

Initiating Planning Executing Controlling Closing 

Project 

Integration 

management 

 Project plan 
development 

Project  plan 

execution 

Integrated 

change 

control 

 

Project scope 

management 

Initial 

scope 

definition 

Scope planning Scope 

change 

control 

Scope 

verification 
 

Project time 

management 
 Activity Definition 

Activity Sequencing 

Activity Duration 

Estimating 

Schedule Development 

 Schedule 

Control 
 

Project cost 

management 
 Resource Planning 

Cost Control 

Cost Budgeting 

 Cost control  

Project   quality 

management 
 Quality planning Quality 

assurance 

Quality 

control 
 

Project human 

resource 

management 

 Organisational 

planning 

Team 

development 
  

Project 

communication 
 Communications 

planning 

Information 

distribution 

Performance 

reporting 

Administr 

ative 



CIT432 SOFTWARE ENGINEERING II 

123 

 

 

 

 

 

s management     closure 

Risk project 

management 
 Risk Management 

Planning 

Risk Identification and 

Qualitative Risk 

Analysis 

Quantitative Risk 

Analysis 

Risk Response 

Planning 

 Risk 

Monitoring 

Control 

 

Project 

procurement 

management 

 Procurement Planning 

Solicitation 

Planning 

Solicitation 

Source 

Selection 

Contract 

Administrati 

on 

 Contract 

closeout 

 

Application Area 
 

PMBOK tries to reflect the growth of knowledge and practices in the 

field of project management by capturing those practices, tools, 

techniques and other relevant items that have become generally 

accepted. Being generally accepted does not mean the knowledge and 

practices described in the PMBOK framework are or should be applied 

uniformly on all projects. 

 

Advantages 
 

a. PMBOK provides a general project management framework in 

the form of process groups and knowledge areas. 

b. PMBOK gives a concise summary of and reference to generally 

accepted project management principles. 
c. PMBOK proposes a unified project management terminology. 

 

Disadvantages 

 

a. PMBOK is only a framework; the actual needs of the project in 

question should be determined by a knowledgeable managerial 

team. 

b. PMBOK provides minimal coverage of various project 

management methodologies and techniques. One definitely needs 

to consult specialised texts on these subjects in order to learn the 

ins and outs. 

c. PMBOK only covers those aspects of the project management 

process that are profession independent. 



CIT432 SOFTWARE ENGINEERING II 

124 

 

 

 

 

Usage in Methodologies 
 

Since PMBOK is really a collection of generally accepted project 

management techniques, these techniques can easily be integrated in 

other methodologies when applicable. 

 

 Milestone Trend Analysis (MTA) 
 

MTA is a software engineering technique for evaluating the actual 

progress of a project in relation to its planning. This relatively simple 

technique consists of recording the dates of the milestone deadlines at 

the times they are changed, i.e. when they are postponed or advanced. In 

this way, one gets a matrix of data: the columns of the matrix delimit the 

project milestones, the rows, the dates on which the deadlines were re- 

evaluated, while an actual cell contains the new deadline estimate for the 

milestone in question. Of course, one can greatly enhance insight in 

these data by using some simple visualisation techniques. This can be 

done by plotting the estimated deadlines against the dates on which they 

were evaluated. The latter are usually placed on the X-axis while the 

former is on the Y-axis. The evolution of a project milestone deadline is 

thus visible as a curve on the graph: downward movement of the curve 

signifies that the deadline in question was advanced, while upward 

movement means postponement. One can also easily spot milestone 

completion: this is the case when the curve intersects the line y = x. The 

general shape of the graph is often roughly triangular: this is the result of 

the fact that we stop plotting a curve when the milestone in question has 

reached completion, i.e. when it intersects with the angular bisector of 

the first quadrant. An example of a typical MTA chart can be seen in the 

figure below. 
 

 

 

 

Figure 3.6:       MTA Chart (MTA-SAP) 



CIT432 SOFTWARE ENGINEERING II 

125 

 

 

 

 

Application Area 
 

MTA can be applied to every project that uses milestones as the major 

indicators of progress. It is in essence a very simple and elegant 

technique that can easily be applied to assess progress. Of course, MTA 

is an evaluation technique that is to be employed during the execution of 

a project. Its major uses are preventing and correcting schedule slippage, 

and post-mortem schedule evaluation. 

 

Advantages 
 

a. MTA is a simple, elegant and effective technique. 

b. MTA is widely used and supported. 

c. MTA has a large application area. 

 

Disadvantages 
 

a. MTA in itself does not keep track of inter-package dependencies. 

Therefore, when a certain milestone completion date is altered, 

one need to make sure its dependencies is altered as well. This 

does not prove to be much of a problem in practice however, 

since MTA is available as a plugin for more comprehensive 

project management tools that can keep track of dependencies. 

b. The inputs of the MTA technique are of course estimates of 

milestone completion deadlines. As such, it is imperative these 

estimates are made by knowledgeable and experienced engineers. 

MTA will not be of much use if these estimates are not 

reasonably accurate. 

 

Usage in Methodologies 

 

As stated above, the only prerequisite is that the project under scrutiny 

uses milestones. MTA does not impose any further restrictions on the 

process model and can help to clarify progress assessment in almost any 

project. 

 

 Earned Value (EV) Management 
 

In earned value management, the progress of a project is estimated by 

comparing what already has been done with the estimates that were 

made at the beginning of a project. By extrapolating these 

measurements, a project manager can judge how much resources will be 

used at the end of a project. 

 

Before we move further, let us look at some common acronyms that are 

used in the EV management: 



CIT432 SOFTWARE ENGINEERING II 

126 

 

 

 

 

Table 3.2: Common Acronyms that are used in the EV Management 
 

 

Acronym Meaning 

BCWS Budgeted Cost for Work Scheduled 

BCWP Budgeted Cost for Work Performed 

ACWP Actual Cost of Work Performed 

BAC Budget At Completion 

EAC Estimate At Completion 

BCWP Budgeted Cost for Work Performed 
 

As shown in table 3.2 above, common acronyms that are used in the EV 

management include: 

 

 Budgeted Cost for Work Performed (BCWP) is also known as the 

earned value: This value shows what a project has really earned 

at a certain point in time. The cost of an amount of work can be 

expressed in different ways; it could be in dollars or hours. 

 

Furthermore, one has to choose when something has been earned. It can 

be chosen to only set something to be earned when the full task is done. 

Or say that the part of the task that already had been done has been 

earned. In the last case, the problem is estimating how far a task has 

progressed is difficult. In the first case, the problem is that work on a 

task will skew the figures a little until the task has been done. For 

example when 95% of the work has been done the earned value of that 

task is still zero, while there is a significant amount of spent value on it. 

 

EV indicators 

 

 Cost Variance: CV = BCWP - ACWP 
 

This shows the difference between the budgeted cost for a certain 

amount of work (BCWP) and the real cost of an amount of work 

(ACWP). A  negative number indicates that the cost has been 

underestimated, while a positive number indicates that the cost has been 

overestimated. 

 

 Schedule Variance: SV = BCWP - BCWS 
 

This shows the difference between what has been earned at a certain and 

what should have been earned. 

 

 Budget Remaining: BR = BAC – ACWPcumulative 
 

This shows the amount of budget that is still available to complete the 

project. 



CIT432 SOFTWARE ENGINEERING II 

127 

 

 

 

 

 Work Remaining: BCWR = BAC – BCWPcumulative 
 

This shows the amount that still has to be earned in this project, thus the 

work that remains to be done. 

 

 Variance at Completion: V AC = BAC - EAC 
 

This shows the difference between the planned cost at the end and the 

estimated cost at the end. A negative value indicates that the project is 

costing more than planned and a positive value indicates that it  is 

costing less. 

 

 Cost Performance Index (Efficiency): CPIe = BCWP/ACWP 
 

This shows how efficient the project is being done in terms of cost. For 

example, a value of 2 shows that the project is currently costing half of 

the amount planned. Or in other words it is being done twice as efficient 

as estimated. 

 
 Schedule Performance Index (Efficiency): SPIe = 

BCWP/BCWS 
 

This shows how efficient the project is being done in terms of time. For 

example a value of 2 shows that the project is going twice as fast as 

estimated. 

 

 Estimate At Completion: EAC = BAC/CPIe 
 

This gives a prediction of the cost at the end of the project. The 

equivalent but longer version EAC = ACWP + (BAC-BCWP)/CPIe is 

often used in the literature. It is important to note that CPIe is a moving 

target and changes during the course of the project. Instead of using the 

CPIe of the whole project, the CPIe of for example, the last three months 

can be used. This takes the current performance of the project better into 

account. Of course choosing shorter timespans for the CPIe will increase 

the influence of short periods of peak performance. 

 

Advantage 
 

a. During a project, a manager can judge if the project is on 

schedule/budget. If that is not the case, an estimate can be made 

on how far the project is over budget. 



CIT432 SOFTWARE ENGINEERING II 

128 

 

 

 

 

Disadvantages 
 

a. It is very difficult to estimate the real Earned Value at a certain 

point in time. 

b. Wrong estimates of this value can make a project look like it is 

doing a lot better than it really is (or the other way around). 

 

Usage in Methodologies 

 

EV management can be used to monitor projects where there is planning 

beforehand when certain goals should be reached. This encompasses 

most thick methods. Examples include PRINCE2, SSADM. 

 

 Critical Path Analysis 
 

The critical path technique operates on a directed acyclic graph that 

sequentially orders all tasks that need to be completed in the project. We 

term this graph the project network. An example of a project network 

can be seen in Figure 3.7. The tasks connected in a project network are 

typically the terminal elements of a Work Breakdown Structure. The 

graph specifies the order in which the different tasks need to be 

completed, and the dependencies between them. Each task has an 

associated cost in time. The critical path is the longest path from the 

start of the project to the finish, and its cost is the shortest period in 

which the project can be completed. Any delay on tasks on the critical 

path will delay the entire project. In our example, the critical path is (s, 

b, d, t), with a cost of 60 days. 

 

A related concept is slack; this is the time that a single activity can be 

delayed, without delaying the project. By definition, the slack of all 

activities on the critical path is 0. 
 

 

 
 

 

Figure 3.7:       An Example of a Project Network 

a(5) C (30) 

S t 
d (50) 

b(10) 

e(20) f(5) 



CIT432 SOFTWARE ENGINEERING II 

129 

 

 

 

 

Application Area 
 

Critical path can be used for task scheduling in just about any project 

management scheme. However, the grade of dependencies between the 

tasks must be high enough to make critical path calculation useful. 

Calculating the critical path for all the deliverables in a (linear) waterfall 

methodology just would not be all that surprising. 

 

Advantage 

 

a.  Critical Path analysis is very clear and unambiguous. It can be 

used to identify the most important activities, and make sure extra 

care is given to them. Furthermore, for activities that are not on 

the critical path, the slack can be calculated and taken into 

account. 

 

Disadvantage 
 

a. Critical path was designed for routine activities, which can be 

estimated easily and correctly. Uncertainty about the duration of 

a task cannot be expressed in the critical path model, and reality 

can therefore sometimes deviate from the model's predictions. 

 

Usage in Methodologies 
 

For critical path scheduling to be effective, tasks must be known early in 

advance, and for analysis to be useful, the tasks must have visible 

dependencies. This makes it unsuitable for methodologies like XP, 

where activities are small and scheduled only shortly in advance, and 

tasks have few to no dependencies upon each other. 

 

SELF-ASSESSMENT EXERCISE 4 
 

Why do you think that software management techniques are necessary? 

 

 CONCLUSION 
 

In this unit, you have learnt that project management is the process of 

planning, organising, staffing, directing and controlling the production 

of software. You also learnt some project management tools to include 

brainstorming, fishbone, project critical paths, Gantt chart among others. 

We went further to look at the project management process. Finally, we 

concisely reviewed a selection of well-known project management 

methodologies and techniques. 



CIT432 SOFTWARE ENGINEERING II 

130 

 

 

 

 

10.0 SUMMARY 
 

In this unit, you have learnt about: 

 
 the rules, processes and tools for project planning and project 

management 

 project management tools 

 project management process 

 project management methodologies 

 project management techniques. 

 

11.0 TUTOR-MARKED ASSIGNMENT 
 

1. In your own words, explain what you understand by software 

project management. 

2. Give a vivid explanation of the following two project 

management tools (i) critical path analysis (ii) Gantt charts 

3(a) Dwell extensively on any two project management 

methodologies of your choice 
(b) Explain thick and thin methodologies 

 

4(a) Define software management technique 

(b) Discuss the following software project management techniques 

 

(i) Milestone trend Analysis (MTA) 

(ii) Constructive cost model (COCOMO) 

(iii) Earned value (EV) management 

(iv) What are the advantages of the critical path technique of project 

management? 

 

7.0 REFERENCES/FURTHER READING 
 

CC-BOOK Alistair Cockburn | Crystal Clear (due out September 2004, 

June 2004 Draft Available from  

http://alistair.cockburn.us/crystal/ books/alistairsbooks.html). 

Retrieved online 15/10/1010. 

 

[CC-PPP] The Portland Pattern Repository Wiki | Crystal Clear 

Methodology http://c2.com/cgi-bin/wiki?. Retrieved online 

15/10/1010. 

 

CCM-BOEHM B. Boehm, B. Clark, et al. | Cost Models for Future Life 

Cycle Processes: COCOMO. Annals of Software engineering, 

1995. 

 

CrystalClearMethodology [CC-WIKI1] Crystal Wiki | Crystal versus XP 

http://alistair.cockburn.us/crystal/
http://c2.com/cgi-bin/wiki


CIT432 SOFTWARE ENGINEERING II 

131 

 

 

 

 

http://alistair.cockburn.us/crystal/wiki/FaqCrystalVsXp Retrieved online 

15/10/1010. 

 

CC-WIKI2 Crystal Wiki/Crystal Versus RUP  

http://alistair.cockburn.us/crystal/wiki/FaqCrystalVsRup. 

Retrieved online 15/10/1010 

 

SSADM-MS Model Systems: SSADM http://www.modelsys.com/ 

msssadm.htm. 

 

Kirchof, N. J. & Adams, J. R. (1986). Conflict Management for Project 

Managers, Project Management Inst. 

 

Basili, V. & Weiss, D. (1984). A Methodology for Collecting Valid 

Software Engineering Data. IEEE/ACM Transactions on 

Software Engineering, SE-10(6): 728-738. 

 

Bradac, M.; et al. (1993). Prototyping a Process Monitoring 

Experiment. In Proceedings of the 15th International Conference 

on Software Engineering, page 155-165, May 1993. 

 

Kaiser, G. & Feiler, P. (1988). Intelligent Assistance for Software 

Development and Maintenance. IEEE Software, pp. 40-49, May 

1988. 

 

CP-MSPROJ Microsoft Project | Critical Path Analysis  

http://office.microsoft.com/en- 

us/assistance/HP010404341033.aspx. Retrieved online 

15/10/1010 

 

http://evm.nasa.gov/ Earned Value Management 

 

Earned Value Management Web site http://www.acq.osd.mil/pm/ 

http://alistair.cockburn.us/crystal/wiki/FaqCrystalVsXp
http://alistair.cockburn.us/crystal/wiki/FaqCrystalVsRup
http://www.modelsys.com/
http://office.microsoft.com/en-
http://evm.nasa.gov/
http://www.acq.osd.mil/pm/

