COURSE CODE:
COURSE TITLE:
CREDIT UNIT:
TIME ALLOWED:
INSTRUCTION:

PHY 492
LABORATORY PHYSICS III
3
(3 HRS)
Answer question 1 and any other three questions

QUESTION 1

In an optics experiment, a student obtained the following readings:

Distance of object from lens $\mathbf{U (c m})$	Distance of image from the object X(cm)
14.0	64.0
18.0	50.0
26.0	46.0
40.0	56.0
55.0	68.0

(a) (i) Prepare a composite table containing V the image distance from the lens, $U+V$ and $U V$ for each reading above.
(6marks)
(ii) Plot a graph of $U V$ against $U+V$
(6marks)
(iii) Obtain the slope \mathbf{K} from the graph
(iv) What is the physical meaning of \mathbf{K} ?
(Hint: $\mathrm{V}=\mathrm{X}-\mathrm{U}$)
(b) Draw and label a ray diagram showing how a virtual image of an object is formed by a converging lens
(4marks)
(c) An object is placed on the principal axis of a converging lens of focal length 12 cm . If the magnification of the real image formed by the lens is 3, calculate the distance of the object from the lens.
(4marks)

QUESTION 2

In an experiment to verify Hooke's law a NOUN student obtained the following readings:

\section*{Click to download more NOUN PQ from NounGeeks.com
 | $\mathbf{m}(\mathbf{k g})$ | Load $\mathbf{F}(\mathbf{N})$ | Position of the lowest pomit
 of spring $\mathbf{L}(\mathbf{c m})$ |
| :--- | :--- | :--- |
| 0.00 | 0.00 | 55.0 |
| 0.10 | 0.98 | 57.6 |
| 0.20 | 1.96 | 61.3 |
| 0.30 | 2.94 | 64.9 |
| 0.40 | 3.92 | 68.4 |
| 0.50 | 4.91 | 72.0 |}

a(i) Prepare a composite table including extension $\mathbf{e}(\mathrm{cm})$ produced by the load (4marks) ii Plot the graph of F against e
iii Obtain the slope \mathbf{s} from the graph
iv What is the physical meaning of \mathbf{s}
(b) Mention three apparatus needed in carrying out these experiment in the laboratory
(3marks)
(c) State Hooke's law and write its mathematical expression
(2marks)

QUESTION 3

A student carried out an experiment to investigate how the diameter d of the path of a beam of electron varied with accelerating voltage V when a magnetic field B was applied at right angle to the electron beam. The results obtained were as follow:

V / v	$\mathrm{d} \mathrm{x} 10^{-2} \mathrm{~m}$
500	2.1
1000	2.8
1500	3.4
2000	3.9
2500	4.3
3000	4.7

(a) Prepare a complete table showing $\mathrm{V}, \mathrm{d}, \mathrm{d}^{2}$
(3marks)
(b) Plot a graph of d^{2} on y axis and V on the x-axis
(c) It is suggested that V and d are related by the formula:
$\frac{e}{m}=\frac{8 V}{B^{2} d^{2}}$
i) Write an expression for the gradient of the graph
ii) Obtain the slope of the graph
(2marks)
(d) Giving that the magnetic flux density is $7.9 \times 10^{-3} \mathrm{~T}$. using the value of s , determine $\frac{e}{\mathrm{~m}}$

Click tersicernload more NOUN PQ from NounGeeks.com
 An experiment was carried out to determine the resistance of a lamp filament, the result

obtained were as given below.

\mathbf{V}	\mathbf{I}	\mathbf{R}
2.2	0.36	
4.1	0.62	
6.0	0.86	
7.9	0.98	
9.8	1.20	
10.0	20.0	

(a) Calculate the resistance R of the lamp filament and complete the table above (4marks)
(b) State factors which affect the resistance of a wire and write an expression for the resistivity of a wire.
(5marks)
(c) The bulb is switched on for 7 minutes. The current is 1.5 A and the potential difference is 11.6 V .
i) Show that the rate of electrical energy transfer is about 21.5 W
(3marks)
ii) Show that the electrical work done is about 9009」
(3marks)

QUESTION 5

In an experiment to determine the magnification of a lens, ho (object height) is placed a distance u from the lens and $\mathbf{h}_{\mathbf{i}}$ (image height) formed on a screen at distance \mathbf{x} from \mathbf{F} with the scale $1=10 \mathrm{~cm}$

$$
\text { ho }=2.0 \mathrm{~cm} \quad \text { ho converted }=\quad 1 \mathrm{mk}
$$

| \mathbf{x} | $\mathbf{h}_{\mathbf{i}}$ | \mathbf{x} converted(cm) | $\mathbf{h}_{\mathbf{i}}$ converted (cm) | $m=\frac{h_{i}}{h_{o}}$ | m^{-1} |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad x^{-1}$

b) Plot the graph of m^{-1} on the vertical axis and \mathbf{x}^{-1} on the horizontal axis. (3marks)
c) Obtain the magnification at $\mathbf{x}=25 \mathrm{~cm}$
(2marks)

QUESTION6

a) Give two important conditions for resonance frequency to occur in an R-L-C a.c circuit.
(4marks)
b (i) If $X_{C}=\frac{1}{2 \pi f c}, \quad X_{L}=2 \pi f L$, obtain an expression for resonance frequency
(ii) Show a sketch of current against frequency indicating resonance frequency $\mathbf{f}_{\mathbf{0}}$ (4marks)
c) The washing machine is connected to a 230 V supply. What current is drawn from the supply by the heater if it's power rating is 2500 W

