違 en from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES DEPARTMENT OF PHYSICS 2023_1 POP EXAMINATION

COURSE CODE:
COURSE TITLE:
CREDIT UNIT:
TIME ALLOWED:
INSTRUCTION:

PHY 391
PHYSICS LABORATORY II
2
(2 HRS)
Answer question 1 and any other two questions

QUESTION 1
a) State one difference and one similarity between latent heat of fusion and latent heat of vaporization.
b) State the three precautions to be taken in carrying out the experiment on the acoustic resonance in a tube.
c) Show that the heat capacity at constant pressure is greater than heat capacity at constant volume by a factor $n R$ where n is the number of moles in the volume of gas and R is the universal gas constant.
d) i) What is an unpolarised light?
ii) How can you make an unpolarised light to be linearly polarized using a Polaroid? 2marks
e) i) Why is a diverging lens called a negative lens? 2mark
ii) Write down four differences between diverging and converging lens. 4marks
f) Briefly explain what a transducer means 3marks
g) i) What is an OP-amp? 2mark
ii) What are the names of the 2 inputs of an opamp? 3marks
iii) Explain the effect on the signal applied at the 2 input? 2marks

QUESTION 2

ai) What is an electrical network? 3marks
aii) Differentiate between an active and a passive network
5marks

Click to downioad more NOUN PQ from Nounceeks.com

Repeat with $\mathrm{V}_{2}=3$ volts alone.
-Another voltage of 3 volts is connected to the $1^{\text {st }}$ voltage source and is connected to the same resistor. Measure the current.

3marks
-Compare your result when the current is
a) V_{1} alone, V_{2} alone and $\mathrm{V}_{1}+\mathrm{V}_{2}$ 3mks
b) State the principle guiding the action in (a)

3marks

QUESTION 3

a) In studying the application of Thevinin's theorem in a network, list 3 precautions to be taken 6marks
b) In the study of the energy band gap of a thermometer, the equation is given as:
$\operatorname{Ln}\left(\mathrm{R}_{\mathrm{t}}\right)=\operatorname{LnR}_{0}+\frac{E g}{2 K} \frac{1}{T}$
Where,
R_{T} is the resistance at the T temperature and R_{0} is resistance at OK
When a graph is plotted between $\frac{1}{T}$ on the X axis and $\operatorname{Ln}\left(\mathrm{R}_{\mathrm{t}}\right)$ on Y axis a straight line is formed
i) What is the slope? 3mks
ii) How will you calculate LnR_{0} ? 4mks
iii) What is the value of the energy band gap? 3mks
iv) What is the meaning of the band gap of material? 4mks

QUESTION 4

a) What is meant by the ripple factor of a rectifier circuit? 4mks
b) How do you determine the polarity of a diode, if you are taking measurements with it? 5 mks
c.i) Define the rms value of an AC current.
$3 m k s$
(ii) If the peak AC current is 20 A , what is the rms value?

4mks
d) If you are provided with 1000 microfarads, 25 V capacitor and several load with connecting wires. How can the ripple factor for each load be calculated?

4mks

Click to download more NOUN PQ from NounGeeks.com

a) Explain what happens when a capacitor and an inductor is put as filters in the out terminal

4mks
b) What is negative feedback? 3mks
c) Calculate the gain for the inverting OP Amp if the values of the resistance are given as:
i) $\mathrm{R}_{\mathrm{R}}=5 \mathrm{k} \Omega, \quad \mathrm{R}_{\mathrm{F}}=12 \mathrm{k} \Omega$ 3mks
ii) $\mathrm{R}_{\mathrm{R}}=5 \mathrm{k} \Omega, \quad \mathrm{R}_{\mathrm{F}}=5 \mathrm{k} \Omega \quad$ 3mks
iii) $R_{R}=5 \mathrm{k} \Omega, \quad \mathrm{R}_{\mathrm{F}}=2.5 \mathrm{k} \Omega \quad$ 3mks
iv) State 2 observations or inferences from the results gotten from i, ii and iii. 4 mks

