

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja FACULTY OF SCIENCES DEPARTMENT OFMATHEMATICS 2023 1 POP EXAMINATION...

Course Code:	MTH421
Course Title:	Ordinary Differential equations
Credit Unit:	3
Time Allowed:	3 Hours
Total:	70 Marks
Instruction:	Answer Question Number One and any Other Three Questions

1. (a) Solve the following initial value problems

(i)	$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0,$	y(0) = 4, y'(0) = 1	(9 marks)
-----	---	---------------------	-----------

- (ii) $x^2 \frac{d^2 y}{dx^2} 6y = 0$, y(1) = 2, y'(1) = 1 (9 marks)
- (b) Verify that equation $3x(xy-2)dx + (x^3 + 2y)dy = 0$ is exact and find the general solution (7 marks)
- 2. Solve the non-homogenous linear differential equation

(i)
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = x^2$$
 (9 marks)
(ii) $\frac{dy}{dx} - y^2 = 1$ (6 marks)

- 3. (a) Prove that $x = 3e^{7t}$, $y = 2e^{7t}$ and $x = e^{-t}$ $y = -2e^{-t}$ are solution of a system of differential equations (6 marks)
 - (b) Find the solution to the boundary value problem

$$y'' + 4y = 0, \ y(0) = 1, y\left(\frac{\pi}{2}\right) = 0$$
 (9 marks)

- 4. (a) Show that $y = e^{-2x}$ is a solution to the equation y'' + y' - 2y = 0 (6 marks)
 - (b) Solve the equation $\frac{d^3y}{dx^3} 2\frac{d^2y}{dx^2} \frac{dy}{dx} + 2y = 0$ (9 marks)
- 5. (a) Verify that equation $(4xy + 3y^2 x)dx + x(x + 2y)dy$ is /not exact, then solve the equation (10 marks)

Find

(i)	The eigenvalues	(2 ½ marks)
(ii)	The generalized eigenspaces	(2 ¹ / ₂ marks)

6. (a) Find the solution in explicit form for equation

$$\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y - 1)}, \ y(0) = -1$$
 (9 marks)

(b) Find the eigenvalues and eigenfunctions of the Sturm-Liouville problem

$$\frac{dy^2}{dx^2} + \lambda y = 0, \quad 0 \le x \le L, \ y(0) = 0, \ y(L) = 0$$
 (6 marks)