NATIONAL OPEN UNIVERSITY OF NIGERIA
Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja.
FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS

2023_1 POP EXAMINATION

Course Code: MTH 412
Course Title: Functional Analysis II
Credit Unit: 3
Time Allowed: 3 Hours
Instruction: Answer Question number One and Any Other three Questions

1. (a) Let X be a linear space over a scale field $K=\mathbb{R}$ or \mathbb{C}, then define the following terms on the linear space:
(i) a norm on a linear space over a scalar field
(5 marks)
(ii) l_{∞}-space.
(4 marks)
(b) Let X be a linear space defined on a norm $k \cdot k$ such that $\rho: X \times X \rightarrow \mathbb{R}$ is defined for arbitrary $x, y \in X$ by $\rho(x, y)=k x-y k$. Prove that that ρ is a metric on X and also (X, ρ) is a metric space
(8 marks)
(c) Let matrix A represents G in the usual basis of C^{3}. Find the adjoint of $G: C^{3} \rightarrow C^{3}$ defined by:

$$
\begin{equation*}
G(x, y, z)=[3 x+(1-i) y,(2+i) x-3 i z, 4 i x+(3-2 i) y-3 z] \tag{i}
\end{equation*}
$$

(4 marks)
(ii)

$$
F(x, y, z)=[-2 x+(3+i) y,(4-i) x+2 i z, 5 i x+(1-2 i) y-7 z]
$$

(4 marks)
2. (a) Vectors x and v in \mathbb{R}^{n}, the line L along x in the direction of v is given as
$\mathrm{L}=\{\mathrm{x}+\mathrm{av}:, a \in \mathbb{R}\}$. Prove that L is convex.
(7 marks)
(b) Let $x=(1,4,-5,-3)$ and $y=(-2,1,2,3)$ in R^{4}. Evaluate
(i) $k x k 2$
(4 marks)
(ii) $k y k 2$
3. (a) Prove that Bessel's inequality is orthogonal

Click to download more NOUN PQ from NounGeeks.com

(b) Let (X, ρ) be a complete metric such that $E \subset X$. Prove that $\left(\mathrm{E}, \rho_{E}\right)$ is complete if and only if it is closed.
(9 marks)
4. (a) Let set $A=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be an orthogonal vector. Prove that $k u_{1}+u_{2}+\ldots+u_{r} \mathbf{k}^{2}=k u_{1} \mathbf{k}^{2}+k u_{2} \mathbf{k}^{2}+\ldots+k u_{r} \mathbf{k}^{2}$. (9 marks)
(b) Mention 3 examples of incomplete normed linear spaces.
5. (a) Define Riesz Representation theorem on a Hilbert space.
(b) Explain why a linear space is not a Hilbert space with its norm.
(c) Let $u_{1}=(2,4,2), u_{2}=(4,2,-8)$ and $u_{3}=(6,-4,2)$ are vectors in R^{3}. Show that the vectors are orthogonal
6. Let vector u^{*} in U such that $\mathrm{kx}-\mathrm{u}^{*} \mathrm{k}=\inf _{u \in U} k x-u k$. Show that $\mathrm{u}^{*} \in U$ is a unique minimizing vector if and only if $\left(\mathrm{x}-\mathrm{u}^{*}\right) \perp U$.
(15 marks)

