## lick to download more NC P from NounGeeks.con

## NATIONAL OPEN UNIVERSITY OF NIGERIA

University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi, Abuja
FACULTY OF SCIENCES
DEPARTMENT OF MATHEMATICS
2023_1 POP EXAMINATION

## Course Code: MTH402 <br> Course Title: General Topology II <br> Credit Unit: 3 <br> Time Allowed: 3 Hours <br> Total: 70 Marks <br> Instruction: Answer Question One (1) and Any Other 3 Questions

1. (a) Briefly describe the followings:
(i) Discrete topology (4 marks)
(ii) Indiscrete topology.
(4 marks)
(b) Verify the finite intersection $\bigcap_{k=1}^{n} U_{k}$ of the elements of $\tau$ are in $\tau$. Given that $X$ is a set and a topology on $X$ be a collection $\tau$ of subsets of $X$.
(8 marks)
(c) Prove that $\tau$ equals the collection of all unions of elements of $B$. Given that $X$ is a set and $B$ is a basis for a topology $\tau$ on $X$.
(9 marks)
2. (a) Let $(d, X)$ be a metric topological space. Then prove that the collection of all

$$
r \text { - ball } B_{d}(x, r) \text {, for } x \in X \text { and } r>0 \text { is a basis for a topology on } \mathrm{X} \text {. (7 marks) }
$$

(b) Attest that $x \in \bar{A}$ if and only if $\forall V \in N(x), V \cap A=\emptyset$, where A is a subset of a topological space X .
(8 marks)
3. (a) The topologies basis for $\tau$ and $\tau^{0}$ on $X$ are defined by $\boldsymbol{B}$ and $\boldsymbol{B}^{\mathbf{0}}$ respectively on X . then prove that the followings are equivalent:
(i) $\tau^{0}$ is finer than $\tau$;
(ii) $x \in X$ and $B \in \boldsymbol{B} \subset x \mathrm{x}, \exists B^{0} \in \boldsymbol{B}^{\mathbf{0}}$ such that $x \in B^{0} \subset \boldsymbol{B}$.
(b) State whether each of the following functions is a homeomorphism or not:
(i) $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $\mathrm{f}(\mathrm{x})=4 \mathrm{x}+1$.
(ii) $\mathrm{F}:(-1,1) \rightarrow \mathrm{R}$ given by $F(x)=\frac{x}{1-x^{2}}$.
(iii) The identity map $g: \mathrm{R}_{1} \rightarrow \mathrm{R}$ is bijective and continuous.
4. (a) Briefly describe the connection between $\mathrm{T}_{1}$ - space, $\mathrm{T}_{3}$ - space and regularity on a
5. (a) Classify each of the followings into countable or uncountable set:
(i) Z
(1 mark)
(ii) The image of a countable set under any map.
(iii) R .
(1 mark)
(iv) The set $N^{2}=\{(k, n): k, n \in N\}$.
(1 mark)
(v) The union of a countable family of countable sets.
(1 mark)
(vi) Q .
(1 mark)
(b) Let $f$ is a homeomorphism, $X$ is a compact and $Y$ is Hausdorff. Then prove that $f: X \rightarrow Y$ is a continuous bijective function.
6. (a) Briefly explain the following terms:
(i) Covering and Open Cover
(ii) Compact Set
(iii) Subcover
(b) Prove that $h$ is continuous if $h: R \rightarrow R$ is defined by

$$
\text { (i) } h(x)=\frac{x}{2} \text {, if } x \geq 0 \text { and }
$$

(3 marks)
(ii) $h(x)=x$, if $x \leq 0$.
(3 marks)

