Click to download more NC_P

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi, Abuja

FACULTY OF SCIENCES **DEPARTMENT OF MATHEMATICS** 2023_1 POP EXAMINATION

Course Code: MTH402 Course Title: General Topology II Credit Unit: 3 Time Allowed: 3 Hours Total: 70 Marks Instruction: Answer Question One (1) and Any Other 3 Questions

1. (a) Briefly describe the followings:

(i) τ^0 is finer than τ :

(i)	Discrete topology	(4 marks)
(ii)	Indiscrete topology.	(4 marks)

(b) Verify the finite intersection $\bigcap_{k=1}^{n} U_k$ of the elements of τ are in τ . Given that X is a set and a topology on X be a collection τ of subsets of X. (8 marks)

(c) Prove that τ equals the collection of all unions of elements of B. Given that X is a set and B is a basis for a topology τ on X. (9 marks)

2. (a) Let (d, X) be a metric topological space. Then prove that the collection of all

r - ball $B_d(x,r)$, for $x \in X$ and r > 0 is a basis for a topology on X. (7 marks)

(b) Attest that $x \in \overline{A}$ if and only if $\forall V \in N(x)$, $V \cap A = \emptyset$, where A is a subset of a topological space X. (8 marks)

- 3. (a) The topologies basis for τ and τ^0 on X are defined by **B** and **B**⁰ respectively on X. then prove that the followings are equivalent:
 - (ii) $x \in X$ and $B \in \mathbf{B} \subset x$ x, $\exists B^0 \in \mathbf{B}^0$ such that $x \in B^0 \subset \mathbf{B}$. (5 marks)

(b) State whether each of the following functions is a homeomorphism or not: (i) f: $R \rightarrow R$ given by f(x) = 4x + 1. (2 marks) (ii) F: (-1, 1) \rightarrow R given by $F(x) = \frac{x}{1 - r^2}$. (2 marks)

(iii) The identity map g: $R_1 \rightarrow R$ is bijective and continuous. (2 marks)

4. (a) Briefly describe the connection between T_1 – space, T_3 – space and regularity on a

Q from NounGeeks.con

(4 marks)

topological space X. (5 marks) Click to download a more NOUN or siftom Noune eks.con (c) Prove that Q is a set of rational numbers and $\overline{Q} = R$ is a dense subset of R.

(5 marks)

(a) Classify each of the followings into countable or uncountable set:	
(i) Z	(1 mark)
(ii) The image of a countable set under any map.	(1 mark)
(iii) R.	(1 mark)
(iv) The set $N^2 = \{(k, n) : k, n \in N\}.$	(1 mark)
(v) The union of a countable family of countable sets.	(1 mark)
(vi) Q.	(1 mark)
(b) Let f is a homeomorphism, X is a compact and Y is Hausdorff. Then	prove that
$f: X \to Y$ is a continuous bijective function.	(9 marks)
(a) Briefly explain the following terms:	
(i) Covering and Open Cover	(3 marks)
(ii) Compact Set	(3 marks)
(iii) Subcover	(3 marks)
(b) Prove that h is continuous if $h: R \rightarrow R$ is defined by	
(i) $h(x) = \frac{x}{2}$, if $x \ge 0$ and	(3 marks)
(ii) $h(x) = x, if x \le 0.$	(3 marks)
	 (a) Classify each of the followings into countable or uncountable set: (i) Z (ii) The image of a countable set under any map. (iii) R. (iv) The set N² = {(k, n) : k, n ∈ N}. (v) The union of a countable family of countable sets. (vi) Q. (b) Let <i>f</i> is a homeomorphism, <i>X</i> is a compact and <i>Y</i> is Hausdorff. Then <i>f</i> : <i>X</i> → <i>Y</i> is a continuous bijective function. (a) Briefly explain the following terms: (i) Covering and Open Cover (ii) Compact Set (iii) Subcover (b) Prove that <i>h</i> is continuous if <i>h</i>: <i>R</i> → <i>R</i> is defined by (i) h(x) = x/xif x ≥ 0 and (ii) h(x) = x, if x ≤ 0.