

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMATICS 2023_1 POP EXAMINATION...

Course Code: MTH312 Course Title: Abstract Algebra Credit Unit: 3 Time Allowed: 3 Hours Total: 70 Marks Instruction: Answer Question One (1) and Any Other 3 Questions

 1a) Define the following terms: (i) Normal subgroup of a group G 	(3 Marks)
 (ii) Commutator of x and y, x,y ∈ G (iii) a ring with identity (iv) an even permutation. 	(3 Marks) (3 Marks) (3 Marks)
b) Show that if $f: G_1 \rightarrow G_2$ is a homomorphism, then (i) Ker f is a normal subgroup of G_1 .	(3 Marks)

(-)	(**************************************
(ii) Im f is a subgroup of G_2	(3 Marks)

c)Let R be a ring and $a \in R$. Show that the set $aR = \{ax: a \in R\}$ is a subring of R. (7 Marks)

2a) If R_1 and R_2 are two rings and f: $R_1 \rightarrow R_2$ is a ring homomorphism. Define the followings

(i) Im f	(2 Marks)			
(ii) Ker f	(2Marks)			
(iii) Ring isomorphism.	(2 Marks)			
bi) Given that f: $R_1 \rightarrow R_2$ is a ring homomorphism, f is surjective and I is an ideal of R_1 . Show				
that $f(I)$ is an ideal of the ring R_2 .	(4.5 Marks)			

bii) If I is an ideal of a ring R, show that there exists a ring homomorphism $f: R \to R/I$ whose kernel is I. (4.5 Marks)

3a) Define the following terms

(i) ideal of a ring

(3 marks)

Click to download more NOUN PQ from Noun Geeks.com

(3 Marks)

bii) For any ring R and $a_1, a_2 \in R$. Show that $Ra_1 + Ra_2 = \{x_1a_1 + x_2a_2 \in R\}$ is an ideal of R.
(3 Marks)

bi) Given that X is an infinite set and I is the class of all finite subsets of X. Show that I is

4a) Show that $\operatorname{Aut}\mathbb{Z} \cong \mathbb{Z}_2$ (7 marks)

b) Show that any cyclic group is isomorphic to $(\mathbb{Z}, +)$ or $(\mathbb{Z}_n, +)$. (8 marks)

5a)	Define the following terms	
	(i) Principal ideal	(3 Marks)
	(ii) Nilpotent	(3 Marks)
	(iii) Nil radical of R.	(3 Marks)
5b)	Given that $f, g \in S_n$, show that sign $(f \circ g) = (\text{sign } f)(\text{sign } g)$	(6 Marks)

6a). Explain the following terms

an ideal of $\mathcal{P}(X)$.

i.)	when a permutation is called r-cyclic.	(2 marks)
ii.)	A transposition.	(2 marks)
iii.)	When two cycles are said to be disjoint.	(2 marks)

b) Express each of the following permutations as products of disjoint cycles.

 $i.\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 2 & 1 & 3 \end{pmatrix} \quad ii.\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 \end{pmatrix}$ $iii.\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 4 & 7 & 2 & 1 & 3 & 6 & 5 \end{pmatrix}$

(9 marks)