NATIONAL OPEN UNIVERSITY OF NIGERIA
PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2022_2 EXAMINATIONS

COURSE CODE:
COURSE TITLE:
PHY306
CREDIT UNIT:
TIME ALLOWED:
OPTICS II
2
(2 HRS)
INSTRUCTION:
Answer question 1 and any other three questions

QUESTION 1

(A) Explain the term: Simple Harmonic Motion (SHM) (3 marks)
(B). Define amplitude of SHM (2 marks)
(C). Explain the Phase of a vibrating particle (2 marks)
(D). List two (2) conditions for interference of waves from two sources to occur. (2 marks)
(E). Define interference of waves ($\mathbf{3}$ marks)
(F). Write three differences between the biprism and Lloyd's mirror fringes. (6 marks)
(G).What are coherent waves? (2 marks)
(H). Highlight the salient features of the resultant double slit diffraction pattern. (5 marks)

QUESTION 2

(A).A ball rotates counter-clockwise in a circle of radius 3.00 m with a constant angular speed of $8.00 \mathrm{rad} / \mathrm{s}$. At $t=0$, its shadow has an x coordinate of 2.00 m and is moving to the right.
(i) Determine the position of the shadow as a function of time in SI units. (6 marks),
(ii) Find the shadow's velocity and acceleration at any time t ($\mathbf{6}$ marks),
(B). State the principle of superposition of waves ($\mathbf{3}$ marks)

QUESTION 3

(A). If the displacement of a moving particle measured in m at any time is given by $\mathrm{x}=\mathrm{a} \cos \omega \mathrm{t}+\mathrm{b} \sin \omega \mathrm{t}$. Show that the motion is simple harmonic. (5 marks)

Click to download more NOUN PQ from NounGeeks.com

(B) If $\mathrm{a}=3, \mathrm{~b}=4, \omega=2$, find (i) the amplitude ($\mathbf{3}$ marks), (ii) the period ($\mathbf{3}$ marks), (iii) maximum velocity ($\mathbf{2}$ marks), and (iv) maximum acceleration (2 marks).

QUESTION 4

Two electromagnetic waves with identical frequencies have individual intensities $\mathrm{I}_{1}=4.00 \mathrm{~W} / \mathrm{m}^{2}$ and $\mathrm{I}_{2}=2.00 \mathrm{~W} / \mathrm{m}^{2}$.
(A) What phase difference results in a maximum resultant intensity and what is that intensity? (5 marks)
(B) What phase difference results in minimum resultant intensity and what is that intensity? (5 marks)
(C) If we want a resultant wave with an intensity of $\mathrm{I}=7.00 \mathrm{~W} / \mathrm{m}^{2}$, what must the phase difference between I_{1} and I_{2} be? (5 marks)

QUESTION 5

(A). A viewing screen is separated from a double-slit source by 1.2 m . The distance between the two slits is 0.030 mm . The second-order bright fringe $(\mathrm{m}=2)$ is 4.5 cm from the center line.
(i) Determine the wavelength of the light. ($\mathbf{3}$ marks)
(ii) Calculate the distance between adjacent bright fringes. (5 marks)
(B). Red light ($\lambda=664 \mathrm{~nm}$ in vacuum) is used in Young's experiment with the slits separated by a distance $d=1.20 \times 10^{-4} \mathrm{~m}$. The screen is located at a distance of $L=2.75 \mathrm{~m}$ from the slits as seen in the figure below. Find the distance y on the screen between the central bright fringe and the third order bright fringe.

