Cliak to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA
 Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja.
 FACULTY OF SCIENCES
 DEPARTMENT OF MATHEMATICS

2022_2 Examination

Course Code: MTH412

Course Title: Functional Analysis II
Credit Unit: 3
Time Allowed: 3 Hours

Instruction: Answer Question One and any Other three Questions

1. (a) Briefly explain the following terms
(i) Inner product.
(ii) Hilbert Space.
(iii) Orthogonal elements
(iv) Orthonormal set
(b) (i) Show that an inner product space E becomes a normed linear space when equipped with the norm $\|x\|=<x, x,>1 / 2, \forall x \in E$
(ii) Show the parallelogram law in inner product space
2. (a) Briefly Explain Fourier Coefficient of element in an inner product space.
(b) Show that $\sum_{k=1}^{n}\left|\left\langle x, v_{k}\right\rangle\right|^{2} \leq\|x\|^{2}$ for any $x \in E$.
3. (a) Briefly explain the following terms:
(i) Riesz - Fischer theorem in orthogonal system
(ii) The projection Theorem
(b) Let $(E,<\Theta>)$ be inner product space and $x, y \epsilon E$, then prove the Cauchy - Schwartz inequality in inner product space.
4. (a) Briefly explain the following terms

Click to download more NOUN PQ from NounGeeks.com

(i) Direct sum of subspaces of a vector space
(4 marks)
(ii) Direct sum decomposition theorem (3 marks)
(iii) Orthogonal complement
(b) Let U and V be arbitrary subspaces of a Hilbert space H. Prove that
(i) U^{\perp} is a closed subspace of H .
(ii) $V^{\perp \perp \perp}=U^{\perp}$
5. (a) What are the following operators in Hilbert spaces
(i) Adjoint operator
(3 marks)
(ii) Unitary operator in Hilbert spaces
(2 marks)
(iii) Self Adjoint
(b) Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be an orthogonal basis of an inner product E . Prove that for any $v \in E$

$$
\begin{equation*}
v=\frac{\left\langle v, u_{1}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle} u_{1}+\frac{\left\langle v, u_{2}\right\rangle}{\left\langle u_{2}, u_{2}\right\rangle} u_{2}+\ldots+\frac{\left\langle v, u_{n}\right\rangle}{\left\langle u_{n}, u_{n}\right\rangle} u_{n} \tag{8marks}
\end{equation*}
$$

6. (a) State the Bessel's inequality in an inner product space.
(2 marks)
(b) Show that u^{*} is unique such that $u^{*} \in U$ is a unique minimizing vector if and only if $\left(x-u^{*}\right)$ $\perp \mathrm{U}$
