Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway. Jabi, Abuja. FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2022_2 Examination

Course Code: MTH412 Course Title: Functional Analysis II Credit Unit: 3 Time Allowed: 3 Hours Instruction: Answer Question One and any Other three Questions

1. (a) Briefly explain the following terms

	(4 marks)
	(3 marks)
ents	(3 marks)
	(3 marks)
ict space E becomes a normed linear sp	ace
$ x = \langle x, x, \rangle^{\frac{1}{2}}, \forall x \in E$	(7 marks)
aw in inner product space	(5 marks)
pefficient of element in an inner produc	t space. (5 marks)
$ x ^2$ for any $x \in E$.	(10 marks)
ing terms:	
rem in orthogonal system	(4 marks)
orem	(4 marks)
roduct space and $x, y \in E$, then prove the	e Cauchy – Schwartz
space.	(7 marks)
	ents ict space <i>E</i> becomes a normed linear sp orm $ x = \langle x, x, \rangle \frac{1/2}{2}, \forall x \in E$ aw in inner product space oefficient of element in an inner product $\leq x ^2$ for any $x \in E$. ing terms: rem in orthogonal system orem roduct space and $x, y \in E$, then prove the space.

4. (a) Briefly explain the following terms

Click HERE to Practice NOUN Mock E-exams on NounGeeks

1

Click to download more NOUN PQ from NounGeeks.com

(i) Direct sum of subspaces of a vector space	(4 marks)
(ii) Direct sum decomposition theorem	(3 marks)
(iii) Orthogonal complement	(4 marks)
(b) Let U and V be arbitrary subspaces of a Hilbert space H. Prove that	
(i) U^{\perp} is a closed subspace of H.	(2 marks)
(ii) $V^{\perp\perp\perp} = U^{\perp}$	(2 marks)
5. (a) What are the following operators in Hilbert spaces	
(i) Adjoint operator	(3 marks)
(ii) Unitary operator in Hilbert spaces	(2 marks)
(iii) Self Adjoint	(2 marks)
(b) Let $\{u_1, u_2, \dots, u_n\}$ be an orthogonal basis of an inner product E. Prove t	hat for any $v \in E$

$$v = \frac{\langle v, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 + \frac{\langle v, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2 + \dots + \frac{\langle v, u_n \rangle}{\langle u_n, u_n \rangle} u_n$$
(8 marks)

- 6. (a) State the Bessel's inequality in an inner product space. (2 marks)
 - (b) Show that u^* is unique such that $u^* \in U$ is a unique minimizing vector if and only if $(x u^*) \perp U$

(10 marks)

Click HERE to Practice NOUN Mock E-exams on NounGeeks

2