Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi-Abuja FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2022_2 Examinations

Course Code: MTH402 Course Title: General Topology II Credit Unit: 3 Time Allowed: 3 Hours Total: 70 Marks Instruction: Answer Question One (1) and Any Other 3 Questions

SET TWO

1. (a) Briefly Explain a basis for a topology on *X*. (7 marks)
(b) Let *X* be a topological space and *C* is open of subsets of a set *X*. Prove that *C* is a basis for a topology on X?

(c) Verify the finite intersection $\bigcup_{i=1}^{n} U_i$ of the elements of τ are in τ . Given that X is a set and a topology on X be a collection τ of subsets of X. (6 marks) (d) Prove that if **A** and **B** are basis for the topology on X and Y respectively, then the collection $C = \{A \times B : A \in A \text{ and } B \in B\}$ is a basis for the topology on $X \times Y$. (8 marks)

- 2. (a) Briefly explain a metric on a set X. (4 marks)
 (b) Let X and Y be two topological spaces, such that B: = {U × V: U is open in X and V is open in Y}. Then, prove that B is basis for topology on X × Y. (4 marks)
 (c) Prove that S = {π_1^(-1) (U): U is open in X} ∪ {π_2^{-1}(V): V is open in Y} is a sub-basis for the product on X × Y. (7 marks)
- 3. (a) Given A is a subset and A^0 is the set of limit points of A and \overline{A} . Prove that $\overline{A} = A \cup A^0$. (6 marks)

(b) Prove that if X is a Hausdorff space, $\forall x \in X$, the singleton set $\{x\}$ is closed.

(9 marks)

Click HERE to Practice NOUN Mock E-exams on NounGeeks

Click to download more NOUN PQ from NounGeeks.com

4.	(a) Briefly explain the following terms:(i) Topology generated by a basis(ii) Basis for a topology on a set X.	(4 marks) (4 marks)
	(b) If the topology on the range Y is given by a basis B , show that only if any basis element $B \in B$, the set $f^{1}(B)$ is open in X.	t f is continuous if and (6 marks)
5.	 (a) Classify each of the following into Hausdorff space or not: (i) Every metric topology. (ii) Every discrete space. (iii) The real line R with the finite complement topology. (iv) R with the finite complement topology. 	(1 mark) (1 mark) (1 mark) (1 mark)
	b) Let $(C_i)_{i \in I}$ be a collection of connected spaces on X and let p be a point of $T_{i \in I}C_i$. rove that the Union of $(C_i)_{i \in I}$ is one point in common is connected. (11 marks)	
6.	(a) Prove that \mathcal{R} with the standard topology is not compact.	

- (b) Let *W* be an open set in *Z* and $f : X \to Y$ and $g : Y \to Z$ are continuous. Prove that the map $g \circ f : X \to Z$ is continuous. (6 marks) (6 marks)
- (c) State the tube lemma.

(3 marks)

Click HERE to Practice NOUN Mock E-exams on NounGeeks

Click HERE to Practice NOUN Mock E-exams on NounGeeks