Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi, Abuja

FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2022_2 Examinations

Course Code: MTH341 Course Title: Real Analysis Credit Unit: 3 Time Allowed: 3 Hours Total: 70 Marks Instruction: Answer Question One (1) and Any Other 3 Questions

- 1a. If $f(x) = x^2$, defined on the interval [a, b]Show that f'(c) exists if and only if Lf'(c), Rf'(c) exists and Lf'(c) = Rf'(c). (6 marks)
- b. State without prove the Taylor's Theorem with Schlomilch and Roche form of remainder.
 (5 marks)

c. Show that using Maclaurin's theorem, $\cos x \ge 1 - \frac{x^2}{2}$, for all $x \in \mathbb{R}$ (8 marks)

d. When is a function f said to be an increasing function in an interval? (6 marks)

2a. State without prove the Lagranges Mean Value Theorem. (7 marks)

b. Determine the values of a and b for which $\lim_{x\to 0} \frac{[x(a-\cos x)+b\sin x]}{x^3}$ exists and is equal to $\frac{1}{6}$.

(8 marks)

3a. State without prove the Maclaurin's Theorem with Lagranges form of remainder

(5 marks)

b. Evaluate $\lim_{x \to 0^+} \frac{\log \tan 2x}{\log \tan x}$ (10 marks)

Click HERE to Practice NOUN Mock E-exams on NounGeeks

Click to download more NOUN PQ from NounGeeks.com

- **4a.** Deduce the two special form of remainders of Taylor's Theorem with Schlomilch and Roche form of remainder. **(9 marks)**
- **b.** Find the $\lim_{x \to 4} \left\{ \frac{1}{\log(x-3)} \frac{1}{x-4} \right\}$. (6 marks)
- 5a. Verify Rolle's theorem for the function f defined by $f(x) = x^3 6x^2 + 11x 6$ for all $x \in [1,3]$. (8 marks)
- b. Show that if f is differentiable in]a, b[and $f'(x) \neq 0$, for all $x \in]a, b[$, then f'(x) retains the same sign, positive or negative, for all $x \in [a, b]$.(7 marks)
- 6a. Let a function f: $[0,5] \rightarrow \mathbb{R}$ defined by

$$f(x) = \begin{cases} 2x + 1, \text{ when } 0 \le 3\\ x^2 - 2, \text{ when } 3 \le x \le 5 \end{cases}$$

Is the function f derivable at x = 3?(5 marks)

b. Verify the hypothesis and conclusion of Lagrange's mean value theorem for the functions:

(i).
$$f(x) = \frac{1}{x}$$
 for all $x \in [1,4]$ (6 marks)
(ii). $f(x) = \log x$ for all $x \in [1,1+\frac{1}{e}]$ all $x \in [2,4]$. (4 marks)

Click HERE to Practice NOUN Mock E-exams on NounGeeks