Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi, Abuja FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2022_2 Examinations

Course Code: MTH312 Course Title: Abstract Algebra Credit Unit: 3 Time Allowed: 3 Hours Total: 70 Marks Instruction: Answer Question One (1) and Any Other 3 Questions

1a) Define the following terms: i) Im f, f is a homomorphism. ii) Ker f, f is a homomorphism.iii) Commutative ring. iv) an Alternating group. (8 marks)

b) Show that if $f: G_1 \to G_2$ is a group homomorphism. Then f is injective if and only if Ker $f = \{e_1\}$. Where e_1 is the identity element of the group $G_1.(8 \text{ marks})$

c) Define a Sylow *p*-subgroup ii)State without prove the first Sylow's theorem.(9 marks)

2a) Define i). a ring homomorphism ii). an epimorphism(6 marks)

bi) Let R be a ring. Show that the identity map I_R is a ring homomorphism. What are Ker I_R and Im I_R ? Is I_R an epimorphism?

bii) Let $s \in \mathbb{N}$, show that the map $f: \mathbb{Z} \to \mathbb{Z}_s$ given by f(m) = m for all $m \in \mathbb{Z}$ is a ring homomorphism. What are Ker f and Im f? Is f an epimorphism? (9 marks)

Click HERE to Practice NOUN Mock E-exams on NounGeeks

Click to download more NOUN PQ from NounGeeks.com

- 3a) Define the terms
 - i). ideal of a ring ii).proper ideal of a ring iii). The ideal generated by a_1, a_2, \dots, a_n , elements of a ring. (7 marks)
- b)i. Given that X is an infinite set and I is the class of all finite subsets of X. Show that I is an ideal of $\mathscr{P}(X)$.(4 marks)
 - ii.For any ring R and $a_1, a_2 \in R$. Show that $Ra_1 + Ra_2 = \{x_1a_1 + x_2a_2 \in R\}$ is an ideal of R. (4 marks)

4a) Explain the following terms i. when a permutation is called r-cyclic. ii. a transposition iii. when two cycles are said to be disjoint iv. the signature of $f \in S_n$. (7 Marks)

b) Express each of the following permutations as products of disjoint cycles.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(4 Marks)
c) Given that $f, g \in S_n$, show that $sign(f^\circ g) = (sign f)(sign g)$	(4 Marks)
5a) Show that $\operatorname{Aut}\mathbb{Z} \cong \mathbb{Z}_2$	(7 Marks)
b) Show that any cyclic group is isomorphic to $(\mathbb{Z}, +)$ or $(\mathbb{Z}_n, +)$.	(8 Marks)
6a) Define the following terms	

(i) Principal ideal	(2 Marks)
(ii) Nilpotent	(2 Marks)
(iii) Nil radical of R.	(3 Marks)

b) Given a ring R and an ideal I. Show that R/I is a ring with respect to addition and multiplication defined by (x + I) + (y + I) = (x + y) + I and (x + I)(y + I) = (xy) + I for all $x, y \in R$. (8 Marks)

Click HERE to Practice NOUN Mock E-exams on NounGeeks