Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Plot 91, Cadastral Zone, Nnamdi Azikwe Express Way, Jabi, Abuja FACULTY OF SCIENCES DEPARTMENT OF MATHEMATICS 2022_2 Examinations

Course Code: MTH305 Course Title: Complex Analysis II Credit Unit: 3 Time Allowed: 3 Hours Total: 70 Marks Instruction: Answer Question One (1) and Any Other 3 Questions

Q1 (a) (i) Define a single-valued complex function w(z). (3 marks)

(ii) If $z \in C$ such that z = x + iy and w(x, y) = u(x, y) = u(x, y) + iv(x, y) Suppose $f(z) = z^2$, find u(x, y) and v(x, y), (4 marks)

(3 marks)

- (b) Define each of the following:
- (i) a continuous function f at a point z_0 . (3 marks)
- (ii) a branch point.
- (c) (i) Show that the function $u(x, y) = y^3 3x^2y$ is harmonic. (4 marks)

(ii) Determine the poles and the residues at the poles of $f(z) = \frac{2z+1}{(z+1)(z-2)}$. (5 marks)

- (d) State the Green's theorem in a plane.(3 marks)Q2 (a) Define a transformation.(7 marks)
 - (b) Given that z is a complex number and w = f(z). Find $\frac{1}{z}$. (8 marks)
- Q3 (a) Define the limit of a complex function f(z). (5 marks)
 - (b) Suppose $z \in C$. Show that $sin^2z + cos^2z = 1$. (10 marks)
- Q4 (a) Define each of the following:
 - (i) removable singularities (3 marks)

1

Click HERE to Practice NOUN Mock E-exams on NounGeeks

Click to download more NOUN PQ from NounGeeks.com

(ii) bounded complex function.	(4 marks)
(b) Prove that if $f(z) = \frac{\sin z}{z}$ then $z = 0$ is a removable singularity.	(8 marks)
Q5 (a) State the residue theorem.	(5 marks)
(b) Expand $f(z) = \frac{1}{z-3}$ in a Laurent series valid for $ z > 3$.	(10 marks)
Q6 (a) Define an analytic function $f(z)$.	(5 marks)

(b) Establish that the real and imaginary part of the function $f(z) = z^2 + 5iz + 3 - i$ satisfy the Cauchy Riemann equation and deduce the analyticity of the function. (10 marks)

Click HERE to Practice NOUN Mock E-exams on NounGeeks

2