Join group: T.me/NOUNSTUDENTSFORUM CLICK TO DOWNLOAD MORE TMA PQ

MTH341

1. What is the nth- term of the Maclaurin's infinte series expansion of Cos x?
\(\frac{x^{2}}{n}\)
\(\frac{x^{n}}{n!}\)
\(\frac{n!}{2}\)
>> \((-1)^{n} \frac{x^{2n}}{2n!}\)
2. The expression $\ (\frac{(b - a)^{n}} {(n)!} f^{(n)}(c)) $ is called form of Reminder.
Schlomilch and Roche
Taylor and Lagrange's
Cauchy
>> Lagrange's
3. The expression \(\frac \{(b - a)^\{p} (b - c)^\{n - p}\} \{p.(n - 1)!\} f^\{(n)\}(c)\) is called forms of Reminder.
>> Schlomilch and Roche
Taylor and Lagrange's
Cauchy
Lagrange's
4. Let \(f: [0, h] \rightarrow R\) be a function such that exists for every positive integer n and for each \(x \in [0, h]\).
\(f^{(0)}(x)\)
>> \(f^{(n)}(x)\)
\(f^{(n-1)}(x)\)
\(f^{(2)}(x)\)
E. If two functions f and g are (i) continuous in [a, b] (ii) derivable in la, b[and (iii)

Whatsapp: 08089722160 or click here for TMA assistance

Practice E-exams & Chat with course mates on noungeeks.net

Join group: T.me/NOUNSTUDENTSFORUM CLICK TO DOWNLOAD MORE TMA PQ

variable --->> constant $\(\inf y)$ 6. The Lagrangeââ,¬â,,¢s mean value theorem states that the rate of change of a function over an interval is also the actual rate of change of the function at some point of the interval. --->> average constant interval chord 7. Lagrangeââ,¬â,,¢s mean value theorem is particular case of _____ if we choose the function g as $g(x) = x \setminus (|x \mid x \mid [a, b])$. Daboux mean value theorem --->> Cauchy¢â,¬â,,¢s mean value theorem Dirichlet theorem Intermediate mean value theorem 8. The expression \(\frac \{(b - a) (b - c)^\{n - 1\}\} \{(n - 1)!\} \f^\{(n)\\()\) is called ______ forms of Reminder. Schlomilch and Roche Taylor and Lagrange's --->> Cauchy Lagrange's 9. Obtain $(f^{n}(x))$ of $f(x) = \log(1 + x)$ for x > -1. \(\frac{x^{2}}{n}\\) \(\frac{x^{n-1}}{n!}\)

Whatsapp: 08089722160 or click here for TMA assistance

Practice E-exams & Chat with course mates on noungeeks.net

Join group: T.me/NOUNSTUDENTSFORUM CLICK TO DOWNLOAD MORE TMA PQ

 $((-1)^{n} \frac{x^{2n}}{2n!})$

10. What is the nth- term of the Maclaurin's infinte series expansion of $(e^x \cdot R)$?

\(\frac{x^{2}}{n}\)
--->> \(\frac{x^{n}}{n!}\)
\(\frac{n!}{2}\)
\(x^{n}\)

Whatsapp: 08089722160 or click here for TMA assistance

Practice E-exams & Chat with course mates on noungeeks.net