hoin group: time/Noudist CLICK TO DOWNLOAD MORE TMA PQ

direction of $\backslash(v \backslash)$ given by $\backslash(L=\{x+\backslash a l p h a v$: \alpha \epsilon $R \backslash)$ is a \qquad convex set
[MTH412] Any linear subspace $\backslash(M \backslash)$ of $\backslash\left(R^{\wedge}\{n\} \backslash\right)$ is a convex set since linear subspaces are \qquad under addition and scalar multiplication.
closed
[MTH412] Any linear subspace $\backslash(M \backslash)$ of $\backslash\left(R^{\wedge}\{n\} \backslash\right)$ is a convex set since linear subspaces
are \qquad under addition and scalar multiplication.
open
[MTH412] Let $\backslash(p \backslash l e q 1 \backslash)$ be a fixed real number. Each element in the space $\backslash\left(I _\{p\} \backslash\right)$ is a sequence, $\backslash\left(x=\left(x _\{1\}, x _\{2\}, \ldots, x _\{k\}, \ldots\right)\right.$ of real numbers that converge then,
(sum_\{k=1\}^\{\infty\} |x_\{k\}|_\{p\}
) \qquad n
$\backslash(<\operatorname{linfty} \backslash)$
[MTH412]
(a kltimes k_\{2\}\leq kltimes k_\{1\}
)
vector space
[MTH412] Let X be a linear space and $\backslash(x, y$ lepsilon $X \backslash)$. The line segment $[x, y$] joining x and y is define by $[x, y]=$ \qquad
$\backslash(\{$ lambda $x+(1-$-lambda $) \overline{:} \overline{0}$ Veq Vambda \leq 1$\} \backslash)$
[MTH412] Let X be a linear space and $\backslash(x, y$ lepsilon $X \backslash)$. The line segment $[x, y$] joining x and y is define by $[x, y]=$ \qquad
$\backslash(\{\backslash \operatorname{lambda} x+(1-\backslash l a m b d a) y: 0$ Veq \lambda \leq 1$\} \backslash)$
[MTH412] The real line R becomes a normed linear space if $(k \backslash t i m e s k \backslash)$ is set to be \qquad for every number $\backslash(x \backslash e p s i l o n ~ R \backslash)$.
|x|
[MTH412] Let $\backslash\left(k \mid c d o t ~ k _\{1\} \backslash\right)$ and $\backslash\left(k \backslash c d o t ~ k _\{2\} \backslash\right)$ be two norms defined on a linear defined on a linear space $\backslash(X \backslash c d o t h$ \cdot $\} \backslash)$ and $\backslash\left(k \backslash c d o t ~ k _\{2\} \backslash\right)$ are called equivalent if there exist constants $a, b>0$ such that \qquad $\backslash\left(a \operatorname{kltimes} k _\{1\} \backslash g e q 0 \backslash\right)$
[MTH412] All norms defined on a finite dimensional space are \qquad normal

Whatsapp: 08089722160 or click here for TMA assistance

