Join group: T.me/NOUNSTUDENTSFORUM CLICK TO DOWNLOAD MORE TMA PQ

direction of (v) given by $(L={x+alpha v: alpha epsilon R})$ is a convex set

[MTH412] Any linear subspace (M) of (R^{n}) is a convex set since linear subspaces are_____ under addition and scalar multiplication. closed

[MTH412] Any linear subspace (M) of (R^{n}) is a convex set since linear subspaces are_____ under addition and scalar multiplication. open

[MTH412] Let \(p\leq 1\) be a fixed real number. Each element in the space \(I_{p}\) is a sequence, $(x = (x_{1}, x_{2}, ..., x_{k}, ...)$ of real numbers that converge then, $(sum_{k=1}^{1} |x_{k}|_{p}) _ n < (<\left(\frac{1}{p}\right)$

[MTH412] \(a k\times k_{2}\leq k\times k_{1}\) vector space

[MTH412] Let X be a linear space and $(x,y \ge X)$. The line segment [x, y] joining x and y is define by [x,y] =______ $(\{\lambda = 1, \lambda = 1, \dots, \lambda = 1\})$

[MTH412] Let X be a linear space and $(x,y \ge X)$. The line segment [x, y] joining x and y is define by [x,y] =______ $(\{\lambda = 1, \lambda = 1, \dots, \lambda = 1\})$

[MTH412] The real line R becomes a normed linear space if(k times k) is set to be_____ for every number (x Psilon R). |x|

[MTH412] Let $(k cdot k_{1})$ and $(k cdot k_{2})$ be two norms defined on a linear defined on a linear space (X cdot k cdot)) and $(k cdot k_{2})$ are called equivalent if there exist constants a, b > 0 such that ______ $(a k times k_{1} eq 0)$

[MTH412] All norms defined on a finite dimensional space are ______ normal

Whatsapp: 08089722160 or click here for TMA assistance

Practice E-exams & Chat with course mates on noungeeks.net