Join group: T.me/NOUNSTUDENTSFORUM CLICK TO DOWNLOAD MORE TMA PQ

\subsets\mathbb R\). Then A is open in \(\mathbb R\) if there exists an interval I such that I\subset A. For a,b\(\epsilon\mathbb R, I = I = (a, b)

[MTH402] Let \(\mathbb R\) be with the usual standard topology and let A \subsets\mathbb R\). Then A is open in \(\mathbb R\) if there exists an interval I such that I\subset A. For a,b\(\epsilon\mathbb R, I = I = (a, b)

[MTH402] \(B\)' is the lower limit topology on \(\mathbb R\) if \(\mathbb B' = {[a,b) : a,b\epsilon\mathbb R; a<b}\)

[MTH402] Let $(\pi_{1}(x, y) = x)$ and $(\pi_{2}(x, y) = y)$ then $(\pi_{1}: X x Y \cdot x)$ and $(\pi_{2}: X x X \cdot y)$. The maps (π_{1}) and (π_{2}) are called

Projections of X x X

[MTH402] Let \(\pi_{1}(x, y) =x\) and \(\pi_{2}(x,y) =y \)then \(\pi_{1} : X x Y\rightarrow X \)and \(\pi_{2} : X x X\rightarrow\) Y. The maps \(\pi_{1}\) and \(\pi_{2}\) are called

Projections of X x X

[MTH402] Let $(\pi_{1}(x, y) = x)$ and $(\pi_{2}(x, y) = y)$ then $(\pi_{1}: X x Y)$ and $(\pi_{2}: X x X)$ and (π_{1}) and (π_{2}) are called

Projections of X x X

[MTH402] The countable collection B = { (a, b) : a<b, a,b\(\epsilon\mathbb Q\)} is a _____ for a topology on \(\mathbb R\)

Basis

[MTH402] The countable collection B = { (a, b) : a<b, a,b\(\epsilon\mathbb Q\)} is a _____ for a topology on \(\mathbb R\)

Platform

[MTH402] If (λ) is a topology on X, which of these is trueabout (λ) ? Finite intersctions of elements of (λ) are in (λ)

[MTH402] A metric on a set X with a function d : X x X \(\rightarrow\mathbb R\) holds for all but one property in the following: (d(x,y) = 0) whenever (neq) and (x,y)

Whatsapp: 08089722160 or click here for TMA assistance

Practice E-exams & Chat with course mates on noungeeks.net