woin group: time/Noudist CLICK TO DOWNLOAD MORE TMA PQ

$\backslash\left(m _2 \backslash\right)$ be the slope of the function $\backslash\left(y=\log _3 x \backslash\right)$ at $\backslash(x=1 \backslash)$. Then
$\backslash\left(m _1=\backslash f r a c\left\{m _2\right\}\{\ln (3)\} \backslash\right)$
[MTH381] Consider the function $\backslash\left(y=f(x)=3 e^{\wedge}\{-2 x\}-5 e^{\wedge}\{-4 x\} \backslash\right)$ and describe.
The function has a local maximum at $\backslash(x=\mid f r a c\{1\}\{2\} \ln (\backslash f r a c\{10\}\{3\}) \backslash)$
[MTH381] Let $\backslash(u(x, y, z) \backslash)$ be a vector field such that $\backslash(u(0,0,0))=[1,0,1] \backslash)$ and $\backslash\left(\operatorname{div} u \mid _\{(0 \text {, }\right.$ $0,0)\}=3.1)$ Then $\backslash\left(\operatorname{div}\left(x^{\wedge} 2+2 x+y^{\wedge} 2-z^{\wedge} 2+5\right) u \mid _\{(0,0,0)\} \backslash\right)$ is equal to what?
17
[MTH381] Consider the curve whose equation is $\backslash\left(x^{\wedge} 4+y^{\wedge} 4+3 x y=5\right.$. $)$) The slope of the tangent line, $\backslash(\backslash$ frac $\{d y\}\{d x\} \backslash)$, at the point $(1,1)$ is

(-1
)
[MTH381] A particle moves in a circle according to the equation $\backslash\left(\operatorname{lbar}\{r\}=\cos \left({ }^{\wedge} \wedge 2\right) \backslash\right.$ hat $\{i\}$ $+\sin \left(\mathrm{t}^{\wedge} 2\right) \backslash$ hat $\left.\{j\} \backslash\right)$. The magnitude of the normal component of the acceleration at time $\backslash(t\rangle)$ is
$\backslash\left(4 t^{\wedge} 2 \backslash\right)$
[MTH381] The maximum value of $\backslash\left((x y)^{\wedge} 6 \backslash\right)$ on the ellipse $\backslash\left(\backslash f r a c\left\{x^{\wedge} 2\right\}\{4\}+y^{\wedge} 2=1 \backslash\right)$ occurs at point $\backslash((x, y) \backslash)$ for which $\backslash\left(y^{\wedge} 2 \backslash\right)$ is equal to what?

(|frac\{1\}\{2\}
)
[MTH381] Evaluate the limit $\backslash\left(\lim _\{(x, y) \backslash \text { rightarrow }(0,0)\} \backslash f r a c\{x y\}\left\{x^{\wedge} 2+y^{\wedge} 2\right\} \backslash\right)$ the limit does not exist
[MTH381] The tangent plane to the graph of the function $\backslash\left(z=x^{\wedge} 2 y+\backslash f r a c\{1\}\left\{1+y^{\wedge} 2\right\} \backslash\right)$ at the point $\backslash((1,1, \backslash f r a c\{3\}\{2\}) \backslash)$ contains point $\backslash((2,2, t) \backslash)$ for which value of $\backslash(t \backslash)$?
4
[MTH381] Two kinds of bacteria are found in a sample of tainted food. It is found that the populations size of type $1, \backslash(\mathrm{~N}-1 \backslash)$ and of type $2, \backslash\left(\mathrm{~N} _2\right)$ satisfy the equations $\backslash\left(\backslash f r a c\left\{d N _1\right\}\{d t\}=-k _1 N _1, N _1(0)=N _\{1,0\} \backslash\right)$ and $\backslash\left(\backslash f r a c\left\{d N _2\right\}\{d t\}=-k _2 N _2, N _2(0)\right.$ $\left.=N _\{2,0\} \backslash\right)$. Then the population sizes equal $\backslash\left(N _1=N _2 \backslash\right)$ at the following time. $\backslash(\mathrm{t}=\ln (100) \backslash)$
[MTH381] Consider the vector field $\backslash(v(x, y)=2 x \backslash$ hat $\{i\}+y \backslash h a t\{j\} \backslash)$ in the $x y$ plane. Let C be a smooth simple closed curve in the xy-plane plane travelled counterclockwise and enclosing the region of area 10 . Let $\backslash(n \backslash)$ denote the outer unit normal vector to C. Then evaluate this integral
(\oint_c v.n ds.

Whatsapp: 08089722160 or click here for TMA assistance

