hoin group: time/Noudist CLICK TO DOWNLOAD MORE TMA PQ

nonincreasimg
[MTH341] A function
(f: E rightarrow $R \backslash$) defined on a set $\backslash(E$ ssubset $R \backslash$) is said to be
\qquad on E if $\backslash\left(\right.$ (forall $x _1, x _2$ in ($x _1<x _2$ Rightarrow $f\left(x _1\right)<f\left(x _2\right)$)).
increasing
[MTH341] Let $\backslash(f: R$ rightarrow $R \backslash)$ be a function defined as $f(x)=\backslash\left(x^{\wedge} n \backslash f o r a l l \mid x\right.$ in $\left.R \backslash\right)$
where n is a fixed positive integer. What is the differentiability of f at any point $\backslash(x$ in R.
1)?
$f^{\prime}(x)=\backslash\left(n x^{\wedge}\{n-1\} \backslash\right)$
[MTH341] Let a function f be defined on an interval I. If f is derivable at a point $\backslash(\mathrm{c}$ in I) , then it is \qquad at c .
continuous
[MTH341] Let f be a real function defined on an open interval $[a, b]$. Let c be a point of this interval so that $\mathrm{a}<\mathrm{c}<\mathrm{b}$. The function f is said to bedifferentiable at the point $\mathrm{x}=\mathrm{c}$ if \qquad exists and is finite.
$\backslash \overline{(\lim x \text { rightarrow }} \mathrm{c} \backslash \operatorname{frac}\{\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{c})\}\{\mathrm{x}-\mathrm{c}\} \backslash)$
[MTH341] A function
(f: E rightarrow $R \backslash$) defined on a set $\backslash(E$ ssubset $R \backslash)$ is said to be on E if $\backslash\left(\right.$ lforall $x _1, x _2$ lin ($x _1<x _2 \backslash$ Rightarrow $\left.f\left(x _1\right)>f\left(x _2\right)\right)$).
$\overline{\text { decreasing }}$
[MTH341] Let $\backslash(f: R$ rightarrow $R \backslash$) be defined as $f(x)=x$ for $\backslash(0$ leq $x<1 \backslash)$ and $f(x)=1$ for $\backslash(x \operatorname{geq} 11)$. When is $f(x)$ continuous?
$\mathrm{x}=1$
[MTH341] Let $\backslash(f: R$ rightarrow R) be defined as $f(x)=x$ for $\backslash(0$ leq $x<1 \backslash)$ and $f(x)=1$ for $\backslash(x \operatorname{lgeq} 1 \backslash)$. When is $f(x)$ not derivable?
$\mathrm{x}=1$
[MTH341] What is the intervals in which the function f defined on R by $f(x)=\backslash\left(2 x^{\wedge} 3-\right.$ $30 x^{\wedge} 2+144 x+7$ \forall x lin R) is decreasing?
[4, 6]
[MTH341] What is the intervals in which the function f defined on R by $f(x)=\backslash\left(2 x^{\wedge} 3-\right.$ $30 x^{\wedge} 2+144 x+7$ \forall x lin R1) is increasing?

(J-linfty, 4] and [6, linfty[)

Whatsapp: 08089722160 or click here for TMA assistance

