CLICK TO DOWNLOAD MORE TMA PQ

minimum the tangent to the curve must be parallel to the x-axis Range
[MTH281] $\backslash\left(f(x, y, z)=x^{\wedge}\{2\}-2 y^{\wedge}\{2\}+3 x y z \backslash\right)$ is a function of \qquad variables. 3
[MTH281] The function $\backslash(f(x)=\backslash f r a c\{1\}\{\sin x\} \backslash)$ is continuous at $\backslash(x=0 \backslash)$ but not \qquad there.
Differentiable
[MTH281] $\backslash(y=\ln \backslash f r a c\{1\}\{x\} \backslash)$ then $\backslash\left(y\left\}^{\prime} \backslash\right)\right.$
(|frac\{1\}\{x\}
)
[MTH281] A function $\backslash(f(x) \backslash)$ is said to be differential, if it possesses a differential
\qquad .
[MTH281] \qquad formula may also be applied to a differential equation to obtain a relation between successive differential coefficients.
LeibnitzÃ¢â, $\frac{1}{\text { â,,¢s }}$
[MTH281] Suppose $\backslash\left(f(x)=x^{\wedge}\{3\} \backslash\right)$, if $\backslash(x=-3 \backslash)$ is inputted then the expected output is $\overline{\(-27 \backslash)}$
[MTH281] $\backslash\left(f(x, y)=x^{\wedge}\{2\}-3 y^{\wedge}\{2\} \backslash\right)$ then $\backslash(f(2,1) \backslash)$
1
[MTH281] Evaluate
(\lim_\{x\rightarrow 2\}\{\left (\backslash frac $\{x\}\{2\} \backslash$ right $)\} \backslash)$ 6
[MTH281] The differential of $\backslash(\cos x \backslash)$ is $\sin x$

Whatsapp: 08089722160 or click here for TMA assistance

