CLICK TO DOWNLOAD MORE TMA PQ

1. A context free language can be recognized by an algorithm in \qquad time by Earley's algorithm.

Select one:
$\mathrm{O}(\mathrm{n} 3)$ (ANS)
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n} 4)$
$\mathrm{O}(\mathrm{n} 2)$
2. Given an alphabet $\hat{£}$, we write $\mathfrak{I} £^{*}$ to denote the set of all \qquad strings over the alphabet Î£.

Select one:
infinite
uncountable
countable
none of the options (ANS)
3. In formal languages, a string is a \qquad sequence of symbols that are chosen from a set of alphabets.

Select one:
finite (ANS)
uncountable
infinite
countable
4. \qquad grammars are recognized by finite state automata (FSA).

Select one:

Whatsapp: 08089722160 or click here for TMA assistance

Join group: T.me/NOUNSTUDENTSFORUM CLICK TO DOWNLOAD MORE TMA PQ

type -0
type -2
type - 1
5. With binary alphabet $\{0,1\}$, the strings ($\bar{\mu} \mu, 0,1,00,01,10,11,00$ etc) would all be in the
\qquad closure of the alphabet (î represents the empty string).

Select one:
Kleene alphabet
Kleene star
Kleene elements
Kleene closure (ANS)
6. $\{I ̈ \mu, 0,1\}^{*}=$ \qquad .

Select one:
$\{I ̈ \mu, 0,1\}$
$\{0,1\}^{*}$ (ANS)
$\{0,1\}$
$\{I ̈ \mu, 0,1\}^{*}$
7. A \qquad declared to have a string data type.

Select one:
token
element
alphabet
variable (ANS)

Whatsapp: 08089722160 or click here for TMA assistance

Join group: T.me/NOUNSTUDENTSFORUM CLICK TO DOWNLOAD MORE TMA PQ

Select one:
unrestricted
regular grammar
context-free (ANS)
context-sensitive
9. \qquad grammars are recognized by Pushdown automata (PDA).

Select one:
type -2 (ANS)
type -1
type -3
type -0
10. String concatenation is an \qquad operation.

Select one:
associative (ANS)
distributive
identity
commutative

Whatsapp: 08089722160 or click here for TMA assistance

