hoin group: time/Noudist CLICK TO DOWNLOAD MORE TMA PQ

the number of neutrons and protons
[PHY402] An element X has two isotpes, Ã, Â2 $\tilde{A}, \hat{A}^{\circ} \tilde{A} c \nmid € \widehat{A} A ̂ \square A ̃ c a ̂ € s ̌ a ̂, \neg X ~ a n d ~$ Âcâ€šÂ $\square \tilde{A} c \hat{\not a} € s ̌ a ̂, \neg \tilde{A}, \hat{A}^{2} \tilde{A}, \hat{A}^{\circ} X$ present in the ratio 3:1. Calcculate the relative atomic mass of X is
21.5
[PHY402] The ability of the Ã \square â $€^{T M}$ ray to be able to dislodge electrons from both the outer and inner orbit are done through the following ways except resistance effect
[PHY402] The amount of energy released when 0.5 kg of uranium is burnt completely. Take $c=3 \times 10 \tilde{A} c \hat{A} \square \hat{A}_{s} \mathrm{~ms}$ Ã $c \hat{A} \square \hat{A} » \tilde{A}_{i} \hat{A} \subseteq \hat{A}_{\mid}^{\prime}$
$4.5 \times 10 \tilde{A}, \hat{A}{ }^{1} \mathrm{~A} \subset \hat{A} \square \hat{A} \mid \mathrm{J}$
[PHY402] An element X has 127 neutrons and 82 electrons. Its atomic number is 82
[PHY402] The half life radioactve nuclide is 20 years. Calculate the fraction that remains after ten years.
0.3465
[PHY402] When atoms undergoes a beta decay, the atomic number of the nucleus increase by one
[PHY402] The decay constant of a certain radioactive nuclide is 0 .
$0200 \mathrm{~m} \tilde{A} \uparrow \hat{A} \square \hat{A} » \tilde{A}_{i} \hat{A} \Psi \mid \hat{A}_{\mid}^{\prime}$. Calculate the fraction that would remain from the sample of 0 .
2 kg of the substance after 3yrs
0.95
[PHY402] The mass number of an atom is
the sum of number of protons and neutrons in the nucleus of the atom
[PHY402] The half-life of a radioactive nuclide is 28 years. Calculate the decay constant.
$2.475 \times 10 \mathrm{Ã} ¢ \hat{A} \square \hat{A} » \hat{A}, \hat{A}^{2}$

Whatsapp: 08089722160 or click here for TMA assistance

