

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Nnamdi Azikiwe Expressway, Plot 91, Cadastral Zone, Jabi, Abuja **FACULTY OF SCIENCES**

Department of Pure and Applied Science

JANUARY 2018 EXAMINATION QUESTION

COURSE CODE: PHY492

COURSE TITLE: Laboratory Physics III

COURSE UNIT: 3 units

ANSWER QUESTIONS ONE AND ANY FOUR OTHER QUESTIONS

Q. 1 A student used the following apparatus: signal generator, capacitor, inductor, voltmeter, ammeter and oscilloscope to perform an experiment where the output voltage was kept constant at 10 V and the following readings were obtained:

Resistance, R	Current, I	
(Ω)	(A)	
10	8.50	
20	7.50	
30	6.50	
40	6.00	
50	5.50	
60	5.00	
70	4.50	
80	4.20	
90	4.00	
100	3.50	

- a. Tabulate your readings
- b. Evaluate: (i) $Z = \frac{V}{I}$ (ii) R^2 (iii) Z^2
- c. Plot a graph of Z^2 on the vertical axis and R^2 on the horizontal axis.
- d. Determine the slope, S of the graph.
- e. Determine the intercept on the vertical axis.F
- f. Find the error in the slope.
- g. State two precautions taken to ensure accurate result.

- Q.2 A student was provided with an illuminated object, converging lens, screen, meter-rule and screen to perform light experiment. The student made the following observations: size of the illuminated object, $h_o = 1.5cm$, object distances, u= 30cm, 35cm, 40cm, 45cm, and 50cm and size of the images, h = 2.2cm, 1.5cm, 1.2cm, 0.9cm and 0.7cm.
 - a. Tabulate your readings. 1 mark
 - b. Evaluate (i) $m = \frac{h}{h_0}$ 1 **mark** (ii) m^{-1} 1 **mark**
 - c. Plot a graph with m⁻¹ on the vertical axis and u on the horizontal axis. 4 marks
 - d. Determine (i) the slope, S of the graph.
 - (ii) Intercept, C on the vertical axis. 1 mark
 - e. Determine the value of u for which $m^{-1} = 0$
 - f. State the precautions taken to obtain accurate results. 1 mark
 - g. Find the error in the slope. 1 mark
- Q.3 In an experiment to determine the refractive index of a liquid by real and apparent depth method using a travelling microscope readings were obtained.

Microscope	Readings	Real depth
d_1 (mm)	d_0 (mm)	d_1 (mm)
6.0	1.5	6.0
7.5	1.7	7.5
8.0	1.9	8.0
9.0	2.0	9.0
10.0	2.5	10.0

- a. If real depth is d₁ and upward apparent displacement is d₀, Evaluate:
- Apparent depth, $d_2=d_1-d_0$ $n=\frac{Real\ depth}{Apparent}, \frac{d_1}{d_2}$ (i)

2 marks

2 marks

b. Calculate the mean of n.

2 marks

c. Find the standard error in the mean.

2 marks

d. Calculate the following: (i) fractional error

2 marks

- (ii) Percentage error. 2 marks
- Q. 4 To measure the focal length of a converging lens, a student made

the following observations.

S/N	u (cm)	V (cm)	
1	16.50	51.00	
2	20.00	34.00	
3	28.00	23.00	
4	45.00	17.50	
5	60.00	15.50	

- a. Evaluate (i) (u + v) cm 1 mark
 - (ii) (uv) cm^2 for each value and tabulate your readings. 1 mark
- b. Plot a graph of u + v against uv. 2 mark
- c. Determine the slope of the graph, S. 1 mark
- d. Evaluate $\frac{1}{s}$

2 marks

- e. Determine the error in the slope. 1 mark
- f. Draw a ray diagram illustrating how a plane mirror can be used to determine the focal length of a diverging lens. 2 marks
- Q.5 A student made the following observations in investigating the properties of a general series circuit.

V (v)	50	50	50	50	50	50	50	50	50	50
C (μF)	1	2	3	4	5	6	7	8	9	10
I (rms) A	4.0	8.0	20.0	26.0	30.0	24.0	18.0	10.0	7.0	5.0

- a. Evaluate $Z = \frac{V}{I}$ and tabulate your readings. 3 mark
- b. (i) Plot a graph with Z on the vertical axis and C on the horizontal axis. 2 mark(ii)On the same axis plot a graph of I versus C2 mark
- c. Determine the value of C when I is maximum.

2 mark

d. Recall that at maximum current, $X_L = X_C$

$$2\pi \mathsf{fI} = \frac{1}{2\pi f c}$$

Calculate the value of L from the graph.

3 mark

Q.6 In a light experiment, a careful student had the following readings.

S/N	d (cm)	L_1 (cm)	L_2 (cm)
1	100	79.8	59.5
2	85	63.6	20.3

3	75	51.6	23.6
4	65	38.3	21.6
5	55	33.5	26.5

- a. Evaluate the following d_2 , L= ($L_2 L_1$), L^2 and D = ($d^2 L^2$) and tabulate your readings. 3 marks
- b. Plot a graph of D on the vertical axis and d on the horizontal axis. 3 marks
- c. Determine the slope, S of the graph. 2 marks
- d. Calculate the error in the slope. 2 marks
- e. Evaluate $\frac{s}{4}$ 2 marks