Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, Nnamdi Azikiwe Expressway, Plot 91, Cadastral Zone, Jabi, Abuja FACULTY OF SCIENCES

Department of Pure and Applied Science

JANUARY 2018 EXAMINATION QUESTION

COURSE CODE: PHY401

COURSE TITLE: ELEMENTARY PARTICLE PHYSICS

COURSE UNIT: 3 units

TIME:3 HOURS

ANSWER QUESTIONS ONE AND ANY FOUR OTHER QUESTIONS

Necessary constants and Hints

Some Particles and Their Properties Principal Anti-Mass Decay (MeV/c^2) Modes Particle Name S Lifetime(s) particle e⁺ e⁻ Leptons Electron 0.511 0 +1 0 0 Stable < 7eV/c2 Electron-neutrino $\overline{\nu}_{\rm e}$ 0 +1 0 0 0 Stable $\nu_{\rm e}$ μ^+ 2.20×10^{-6} 105.7 0 0 0 0 Muon +1 $\overline{\nu}_{\mu}$ Muon-neutrino < 0.3Stable $< 4 \times 10^{-13}$ 1784 0 0 0 +1 0 $\overline{\nu}_{\tau}$ < 30+1Stable Tau-neutrino Hadrons 2.60×10^{-8} Mesons 139.6 0 0 0.83×10^{-16} π⁰ Self 135.00 0 0 0 0 K+ к- 1.24×10^{-8} Kaon 493.7 0 0 0 +1 K_S^0 $\overline{K_S^0}$ 497.7 0 0 0 0.89×10^{-10} 0 +1 $\pi^{\pm}e^{\mp}\overline{\nu}_{e}, 3\pi^{0}$ K_L^0 5.2×10^{-8} 497.7 0 +1 $\pi^{\pm}\mu^{\mp}\overline{\nu}_{\mu}$ $< 10^{-18}$ Self 548.8 $2y, 3\pi$ η 2.2×10^{-21} Self 0 0 958 0 0 0 938.3 0 0 0 Stable Baryons Proton p 0 0 Neutron 939.6 +10 0 990 п Λ^0 Λ^0 2.6×10^{-10} Lambda 1 115.6 -1 Σ^+ $\overline{\Sigma}$ 0.80×10^{-10} $p\pi^0$, $n\pi^+$ 1189.4 Sigma +10 0 0 -1 Σ^0 Σ_0 $\Lambda^0 \gamma$ 1192.5+10 0 0 -1 6×10^{-20} $\overline{\Sigma}^+$ Σ 1 197.3 +10 0 0 -1 1.5×10^{-10} nπ' 2.9×10^{-10} Ξ_0 Ξ° 0 Xi 1 315 +1-9Ξ-Ξ+ 1.64×10^{-10} 1321 +1-2 0.82×10^{-10} Ω^{-} $\Xi^{0}\pi^{0}$, $\Lambda^{0}K^{-}$ Ω^+ Omega 1672 +10 0 -2

^a Notations in this column, such as $p\pi^-$, $n\pi^0$ mean two possible decay modes. In this case, the two possible decays are $\Lambda^0 \to p + \pi^-$ and $\Lambda^0 \to n + \pi^0$.

Click to download more NOUN PQ from NounGeeks.com

T					
Properties	ot	Quarks	and	Antiq	uarks

 $\overline{\mathbf{b}}$

ī

 $-\frac{2}{3}e$

Name
Anti-up
Anti-down
Anti-strange
Anti-charmed

Anti-bottom

Anti-top

	Quarks							
Name	Symbol	Spin	Charge	Baryon Number	Strangeness	Charm	Bottomness	Topness
Up	u	1/2	$+\frac{2}{3}e$	1/3	0	0	0	0
Down	d	$\frac{1}{2}$	$-\frac{1}{3}e$	$\frac{1}{3}$	0	0	0	0
Strange	s	$\frac{1}{2}$	$-\frac{1}{3}e$	$\frac{1}{3}$	-1	0	0	0
Charmed	c	$\frac{1}{2}$	$+\frac{2}{3}e$	$\frac{1}{3}$	0	+1	0	0
Bottom	b	$\frac{1}{2}$	$-\frac{1}{3}e$	$\frac{1}{3}$	0	0	+1	0
Top	t	$\frac{1}{2}$	$+\frac{2}{3}e$	$\frac{1}{3}$	0	0	0	+1

Antiquarks							
Symbol	Spin	Charge	Baryon Number	Strangeness	Charm	Bottomness	Topness
ū	19	$-\frac{2}{3}e$	$-\frac{1}{3}$	0	0	0	0
$\overline{\mathbf{d}}$	$\frac{1}{2}$	$+\frac{1}{3}e$	$-\frac{1}{3}$	0	0	0	0
\bar{s}	$\frac{1}{2}$	$+\frac{1}{3}e$	$-\frac{1}{3}$	+1	0	0	0
<u>c</u>	1	$-\frac{2}{3}e$	$-\frac{1}{3}$	0	- 1	0	0

0

0

0

-1

0

0

-1

1.	a.	Why are some particles termed elementary particles?	[1 mark]
	b.	What are elementary particles?	[1 mark]
	c.	What are fermions?	[1 mark]
	d.	List 6 elementary particle's detectors that you know	[3 marks]
	e.	Name families and sub-families of elementary particles.	[4 marks]
	f.	Name 2 classes of hadrons.	[2 marks]
	g.	List 4 exact conservation laws.	[4 marks]
	h.	Why are some particles termed strange?	[1 marks]
	i.	What is parity?	[1 marks]
	j.	List 4 types of particle interactions	[4 marks]

Click to download more NOUN PQ from NounGeeks.com

2. Use the law of conservation of lepton number to determine whether each of the following decay schemes can occur

a. $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$

[4 marks]

b. $\pi^+ \to \mu^+ + \nu_e + \nu_{\mu}$

[4 marks]

What conservation law is obeyed or violated by the decay process below

c.
$$n \rightarrow p + e^-$$

[4 marks]

3. A stationary positive pion can decay according to

$$\pi^+ \rightarrow \mu^+ + \nu$$

What is the kinetic energy of the (i) anti-neutrino μ^+ (ii) neutrino. ($m_\pi=139.6~\text{MeV/c}^2$, $m_\mu=105.7~\text{MeV/c}^2$) [12 marks]

4. Use the law of strangeness conservation to determine whether these reactions can occur

a. $\pi^0 + n \to K^+ + \Sigma^-$

[3 marks]

b. $\pi^- + p \rightarrow \pi^- + \Sigma^+$

[3 marks]

c. $\pi^- + p \rightarrow \Lambda^- + K^0$

[3 marks]

d. $p + \bar{p} \rightarrow \Lambda^0 + \bar{\Lambda}^0$

[3 marks]

5. a. The wavelength shift in the light from a particular quasar indicates that the quasar has a recessional speed of 2.8×10^8 m/s. Approximately how far from us is the quasar?

[3 marks]

- b. A particular emission line detected in the light from a galaxy has a detected wavelength $\lambda_{det} = 1.1 \lambda$, where λ is the proper wavelength of the line. What is the galaxy distance from us? (Hubble constant, H = 21.8 mm/s. ly) [9 marks]
- 6. Identify the particle corresponding to the following quark states

a. suu

[6 marks]

b. dss

[6 marks]