JABI, ABUJA
FACULTY OF SCEINCES
DEPARTMENT OF PURE AND APPLIED SCIENCE
JANUARY/FEBRUARY 2018 EXAMINATION

COURSE CODE:
COURSE TITLE:
TIME ALLOWED:
INSTRUCTION:

PHY 313

MATHEMATICAL METHODS FOR PHYSICS II (3 HRS)

Answer ONE and any other four (4) questions

QUESTION 1

a. Prove that the sufficient condition for a function $f(z)=u+i v$ to be analytic at all points in a region R are
$\frac{\partial u}{\partial \lambda}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \& \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} \quad$ (8 Marks)
Are continuous functions of x and y in R.
b. Use the Cauchy-Rieman equation to show that $f(z)=z^{3}$ is analytic in the entire $z-$ plane. (7 Marks)
c. Test the analyticity of the function $f(z)=\sin z$ and hence show that $\frac{d}{d z} \sin z=\cos z$. (7 Marks)

QUESTION 2

a. Show that the real and imaginary parts of $f(z)=\log (z)$ satisfy the Cauchy-Rieman equations. (4 Marks)
b. Derive the polar form of the Cauchy-Rieman equations. (4 Marks)
c. Prove that for any analytic function $f(z)=u+i v$, both $u(x, y)$ and $v(x, y)$ are harmonic. (4 Marks)

QUESTION 3

a. If $w=\emptyset+i \psi$ represents the complex potential of an elective field and $\psi=x^{2}-y^{2}+$ $\frac{x}{x^{2}+y^{2}}$ determine the function \emptyset. (4 Marks)
b. if $f(z)=u+i v$ is analytic and $u-v=e^{x}(\cos y-\sin y)$ find the $f(z)$ in terms of z. (4 Marks)

QUESTION 4

Determine the poles and the Residues at each pole of the following functions
a. $\frac{z^{2}}{(z-1)^{2}(z+2)}$
b. $\cot z$
c. $\quad \frac{z^{3}}{(z-1)^{4}(z-2)(z-3)}$ at $|z|=1$ only

QUESTION 5

a. Find the value of the integral $\int_{0}^{1+i}\left(x-y-i x^{2}\right) d z$
i. 5ai Along the straight path from $z=0$ to $z=1+i \quad$ (4 Marks)
ii. 5aii Along the real axis from $z=0$ to $z=1$ and then along a line parallel to the imaginary axis from $z=0$ to $z=1+i$
b. Using Cauchy's integral theorem, find the value of

$$
\begin{equation*}
\int_{C} \frac{z+4}{z^{2}+2 z+5} \tag{5Marks}
\end{equation*}
$$

If C is the circle $|z+1|=1$

QUESTION 6

a. $\int_{C} \frac{1}{z} \cos z d z$ where C is the ellipse $9 x^{2}+4 y^{2}=1 \quad$ (4 Marks)
b. $\int_{C} \tan z d z$ where C is $|z|=2$
c. $\int_{C} \frac{e^{z}}{z^{2}+1}$ where C is $|z|=2$

