NATIONAL OPEN UNIVERSITY OF NIGERIA
University Village, NnamdiAzikiwe Expressway, Plot 91, Cadastral Zone, Jabi, Abuja FACULTY OF SCIENCES

JANUARY/FEBRUARY 2018 EXAMINATION
COURSE CODE: PHY309
COURSE TITLE: QUANTUM MECHANICS
COURSE UNIT: 3 Units
TIME: 3 hours
INSTRUCTION: Answer question one (1) and any FOUR(4) questions

Necessary Constants: $\hbar=1.054 \times 10^{-34} \mathrm{Js}, h=6.63 \times 10^{-34} \mathrm{Js}, \quad m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$, $c=3 \times 10^{8} \mathrm{~ms}^{-1} h=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s} 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

1. a). Show that the set $\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)\right\}$ is linearly independent(5 marks)
b). Normalise each vector in the set $\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{c}-2 \\ 0 \\ 4\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)\right\}$ (10 marks)
c). Check whether the following vectors are linearly independent
$2 i+3 j-k,-i+j+3 k$ and $-3 i+2 j+k$. (7 marks)
2. a). If there exist a linearly independent set $\left[\phi_{i}\right]_{i=1}^{n}$, state the condition for ;
i. orthogonality ii. Orthonormality(2 marks)
b). Show that $\sin m x$ and $\sin n x$ are orthogonal, when $m \neq n$, for range
$-\pi \leq x \leq \pi$ (5 marks)
c). Find the normalise function of the following
$\begin{array}{ll}\text { i. } \phi_{1}=x & \text { ii. } \phi_{2}=x^{2}-\frac{1}{3}(5 \text { marks })\end{array}$
3. a). Given the matrix $\left[\begin{array}{cc}3 & -2 \\ 2 & 2\end{array}\right]$, find the corresponding eigenvectors and the eigenvalues.(5 marks)
b). Find the eigenvalues and the corresponding eigenfunctions of the matrix $A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right]$. Hence determine the normalised wavefunction for each. (5 marks)
c). Given that kinetic energy operator for point energy $\hat{T}=\frac{-i \hbar d}{2 m d x^{2}}$ and operator for momentum, $\hat{p}=-i \hbar \frac{d}{d x}$

Calculate:
i. $\quad[\hat{T}, \hat{p}]$
ii. $\quad[\hat{x}, \hat{p}]$

Give a brief comment/explanation in the result obtained in (i) and (ii). (2 marks)
4. a). i. What is photoelectric effect and give necessary equation

(2 marks)

ii. With necessary equation explain Compton effect(2 marks)
b). Find the change in wavelength if a photon is scattered at an angle of 25^{0} after its collision with an electron initially at rest.
(2 mark)
c). State 2 postulates of Bohr Theory of the Hydrogen atom.

(1 mark)

d). State Heisenberg's Uncertainty Principle.(1 mark)
e). i. Find the maximum kinetic energy with which an electron is emitted from ametal of work function $3.2 \times 10^{-39} \mathrm{~J}$ when a radiation of

Click to download more NOUN PQ from NounGeeks.com

energy $E=3.313 \times 10^{-39} J$ falls on it, given that the work function is

$3.2 \times 10^{-39} \mathrm{~J}$. (2 marks)

ii. What is the wavelength of the wave associated with an electron moving at $10^{6} \mathrm{~m} / \mathrm{s}$. (2marks)
5.a). State the time-dependent Schroedinger equation for a free particle $(V=0)$ and hence by solving the time-dependent Schroedinger equation, find the condition imposed on the angular frequency and the wavenumber. (6 marks)
b). Which of the following functions would you recommend as a possibleeigenfunction in quantum mechanics?
i. $\Psi(x)=e^{-x^{2}} \quad$ ii. $\Psi(x)=2 x$ iii. $\Psi(x)=x e^{-2 x^{2}}$ (6 marks)
6. a). State the correspondence principle(3 marks)
b). $\Psi(x)=A\left(a x-x^{2}\right)$ for $|x| \leq a$. Normalise the wavefunction and find
i. $\langle x\rangle$ ii. $\left\langle x^{2}\right\rangle$ andiii. Δx. (3 marks)
c). A particle in a one-dimensional box $0 \leq x \leq a$ is in state
$\Psi(x)=\frac{1}{\sqrt{5 a}} \sin \frac{\pi x}{a}+\frac{A}{\sqrt{a}} \sin \frac{x \pi x}{a}+\frac{3}{\sqrt{6 a}} \sin \frac{3 \pi x}{a}$
i. Find A so that $\Psi(x)$ is normalized. (2 marks)
ii. What are the possible results of measurements of the energy, and what arethe respective probabilities of obtaining each result?(2 marks)
iii. The energy is measured and found to be $\frac{9 \pi^{2} h^{2}}{2 m a^{2}}$. What is the state of thesystem immediately after measurement?(2 marks)

