Click to download more NOUN PQ from NounGeeks.com

Ľ

NATIONAL OPEN UNIVERSITY OF NIGERIA University Village, NnamdiAzikiwe Expressway, Plot 91, Cadastral Zone, Jabi, Abuja FACULTY OF SCIENCES

JANUARY/FEBRUARY 2018 EXAMINATION

COURSE CODE: PHY309 COURSE TITLE: QUANTUM MECHANICS COURSE UNIT: 3 Units TIME: 3 hours INSTRUCTION: Answer question one (1) and any FOUR(4) questions

Necessary Constants: $\hbar = 1.054 \times 10^{-34} Js$, $h = 6.63 \times 10^{-34} Js$, $m_e = 9.11 \times 10^{-31} kg$, $c = 3 \times 10^8 ms^{-1} h = 6.63 x 10^{-34} J.s$ $1eV = 1.6 x 10^{-19} J$

1. a). Show that the set $\left\{ \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\2\\1 \end{pmatrix} \right\}$ is linearly independent(5 marks)

b). Normalise each vector in the set $\begin{cases} 1\\2\\3 \end{cases} \begin{pmatrix} -2\\0\\4 \end{pmatrix} \begin{pmatrix} 1\\2\\1 \end{pmatrix}$ (10 marks)

c). Check whether the following vectors are linearly independent 2i + 3j - k, -i + j + 3k and -3i + 2j + k. (7 marks)

2. a). If there exist a linearly independent set $[\phi_i]_{i=1}^n$, state the condition for ;

i. orthogonality ii. Orthonormality(2 marks)

b). Show that $\sin mx$ and $\sin nx$ are orthogonal, when $m \neq n$, for range $-\pi \leq x \leq \pi$ (5 marks)

c). Find the normalise function of the following

i.
$$\phi_1 = x$$
 ii. $\phi_2 = x^2 - \frac{1}{3}$ (5 marks)

3. a). Given the matrix $\begin{bmatrix} 3 & -2 \\ 2 & 2 \end{bmatrix}$, find the corresponding eigenvectors and the eigenvalues. (5 marks)

b). Find the eigenvalues and the corresponding eigenfunctions of the matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$. Hence determine the normalised wavefunction for

```
each. (5 marks)
```

c). Given that kinetic energy operator for point energy $\hat{T} = \frac{-i\hbar d}{2mdx^2}$ and operator for momentum, $\hat{p} = -i\hbar \frac{d}{dx}$

Calculate:

i. $[\hat{T}, \hat{p}]$ ii. $[\hat{x}, \hat{p}]$

Give a brief comment/explanation in the result obtained in (i) and (ii).**(2 marks)**

4. a). i. What is photoelectric effect and give necessary equation

(2 marks)

ii. With necessary equation explain Compton effect(2 marks)

b). Find the change in wavelength if a photon is scattered at an angle of 25[°] after its collision with an electron initially at rest.

(2 mark)

c). State 2 postulates of Bohr Theory of the Hydrogen atom.

(1 mark)

d). State Heisenberg's Uncertainty Principle.(1 mark)

e). i. Find the maximum kinetic energy with which an electron is emitted from a et al of work function $3.2 \times 10^{-39} J$ when a radiation of

Click to download more NOUN PQ from NounGeeks.com

energy $E = 3.313 \times 10^{-39} J$ falls on it, given that the work function is $3.2 \times 10^{-39} J$. (2 marks)

ii. What is the wavelength of the wave associated with an electron moving at $10^6 m/s$. (2marks)

5.a). State the time-dependent Schroedinger equation for a free

particle (V = 0) and hence by solving the time-dependent Schroedinger equation, find the condition imposed on the angular frequency and the wavenumber.(**6 marks**)

b). Which of the following functions would you recommend as a possible eigenfunction in quantum mechanics?

i. $\Psi(x) = e^{-x^2}$ ii. $\Psi(x) = 2x$ iii. $\Psi(x) = xe^{-2x^2}$ (6 marks)

6. a). State the correspondence principle(3 marks)

b). $\Psi(x) = A(ax - x^2) for |x| \le a$. Normalise the wavefunction and find

i. $\langle x \rangle$ ii. $\langle x^2 \rangle$ and iii. Δx . (3 marks)

c). A particle in a one-dimensional box $0 \le x \le a$ is in state

$$\Psi(x) = \frac{1}{\sqrt{5a}} \sin\frac{\pi x}{a} + \frac{A}{\sqrt{a}} \sin\frac{x\pi x}{a} + \frac{3}{\sqrt{6a}} \sin\frac{3\pi x}{a}$$

i. Find A so that $\Psi(x)$ is normalized.(2 marks)

ii. What are the possible results of measurements of the energy, and what are the respective probabilities of obtaining each result?(2 marks)

iii. The energy is measured and found to be $\frac{9\pi^2 h^2}{2ma^2}$. What is the state of the system immediately after measurement? (2 marks)