Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

2019_1 SEMESTER EXAMINATION

COURSE CODE: PHY 404

COURSE TITLE: ELECTRODYNAMICS III

CREDIT UNIT 3

TIME ALLOWED $(2\frac{1}{2})$ HRS)

INSTRUCTION: Answer question 1 and any other four questions

QUESTION 1

a. What is an electric dipole (2marks)

b. How is resonance achieved in the tuning of a radio set? (3marks)

c. What is an isotropic medium (2marks)

d. Show that the refractive index of an isotropic medium is given by n= $\sqrt{(\in_r \mu_r)}$ where $^{\varepsilon}_r$ and μ_r are relative permittivity and relative permeability respectively (5marks)

e. Differentiate between Skin depth and Skin effect (4marks)

f. Determine the skin depth when the frequency is 60 megahertz. (4marks) μ_0 =4 π x 10^{-7,} σ = 5.9 x10 7

g. What is a wave guide? (2marks)

QUESTION 2

- a. Explain how radio waves are generated from oscillating dipoles (5marks)
- b. The aeriel circuit of a radio set has a tuning coil of inductance
 1.5mH.What capacitance must be used with this to tune to a station of frequency 100 kilohertz. (4marks)
 What effects are noticed when a wave is incident on a boundary between two media? (3marks)

QUESTION 3

a. Write the simple differential equation of a resonant circuit. (1 mark)

Click to download more NOUN PQ from NounGeeks.com

- b. Show that the square of the natural frequency w of a resonant circuit is given by $w^2 = 1/LC$ (5marks)
- c. An RLC circuit has a resistor 550 ohms connected to an inductor 0.2H and to a capacitor $1\mu F$.If the frequency of the source is $(1000/\pi)$ Hz, find the impedance and current in the circuit. (6marks)

QUESTION 4

- a. State four Maxwell's equations outside a region of changing charge and current distribution (2marks)
- b. Show that the wave equations for magnetic field and electric field are given as $\nabla^2 E = 1/C^2 d^2 E/dt^2$) and $\nabla^2 B = 1/C^2 (d^2 B/d^2 t)$ (10marks)

QUESTION 5

- a. Why is a pair of parallel conducting planes preferable to parallel transmission lines and coaxial cable (1mark)
- b. Mention two boundary conditions which a pair of perfectly conducting planes must have
 (3marks)
- c. Show mathematically that both voltage and current propagate as waves along transmission lines. (8marks)

QUESTION 6

- a. What is Poynting Vector? (1mark)
- b. Define reflection coefficient and transmission coefficient (2marks)
- c. If the refractive index for a liquid is 6 for waves of frequency 250Hz, calculate the reflection and the transmission coefficients (6marks)
- d. Explain the relationship between the refractive index and the energy reflected and transmitted in question 6C. (3marks)