

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA **FACULTY OF SCIENCES**

DEPARTMENT OF PURE AND APPLIED SCIENCE

APRIL/MAY2019 EXAMINATIONS

COURSE CODE: PHY 312

COURSE TITLE: MATHEMATICAL METHODS FOR PHYSICS II

CREDIT UNIT

TIME ALLOWED (2½ HRS)

INSTRUCTION: Answer question 1 and any other four questions

QUESTION 1

(a) Give a general expression for a second order linear partial differential equation with two independent variables x and y. [2 marks]

(b). Eliminate A and P from the function $Z = Ae^{pt} \sin px$. [4 marks]

(c). Find the Fourier coefficients of the periodic function.

f(x) = -k when $-\pi < x < 0$ and f(x) = k when $0 < x < \pi$. Also $f(x + 2\pi) = f(x)$ [4 marks]

(d) (i) Write the Bessel differential equation. [2 marks]

(ii) Write the Associated Laguerre equation and associated Laguerre Polynomials. [2 marks]

(iii) Give integral representation of the Hermite polynomial. [1 mark] (e) Define the periodic function. Give four examples. [3 marks]

(f) Evaluate the integral $\int x^4 J_1(x) dx$ in terms of $J_0(x)$ and $J_1(x)$. [4 marks]

QUESTION 2

- (a). Find the Fourier series of the sine function represented by f(x) = 0 for $x \le 2$ and f(x) = 2[9 marks] for x > 2 the points (0, 3).
- (b) Solve the equation this equation:

$$\frac{\partial^2 u}{\partial x^2} - 7 \frac{\partial^2 u}{\partial x \partial y} + 6 \frac{\partial^2 u}{\partial y^2} = 0$$

[3 marks]

QUESTION 3

a). Obtain the solution of the equation $m\frac{d^2x}{dt^2} + \Gamma\frac{dx}{dt} + kx(t) = f(t)$

Click to download more NOUN PQ from NounGeeks.com

which represents the forced vibrations of a damped oscillator with Γ representing constant, $F(t)$ the external force and m and k representing the mass of the partic constant respectively. (b) Write the Laplacian operator (c) Write the first three polynomials of the associated Laguerre Polynomials	
QUESTION 4	
(a) Write down the expression for the Neumann function(b) Solve the radial part of the Schrodinger equation	[3 marks] [9 marks]
QUESTION 5 (a) Find the period of tan x. (b) Find the Fourier series for the for $f(x) = e^x$ on $(0, \pi)$ (c) Find the Fourier integral of $f(x) = x^2$ for $-\pi \le x \le \pi$	[3 marks] [4 marks] [5 marks]
QUESTION 6 (a). Write the formula for the generating function for Laguerre polynomials (b) . Derive the Rodrigues formula for the Laguerre polynomials	[3 marks] [9 marks]