Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA PLOT 91, CADASTRAL ZONE, NNAMDI AZIKIWE EXPRESSWAY, JABI - ABUJA FACULTY OF SCIENCES

DEPARTMENT OF PURE AND APPLIED SCIENCE

APRIL/MAY, 2019 EXAMINATIONS

COURSE CODE: PHY 309

COURSE TITLE: QUANTUM MECHANICS 1

CREDIT UNIT 3

TIME ALLOWED (2½ HRS)

INSTRUCTION: Answer question 1 and any other four questions

QUESTION 1

a) Define the term vector space (2 marks)

b) List the properties of the inner product of a vector space V. (6 marks)

c) (i) Determine if the function $f(x) = \sec x$ is even or odd (2.5 marks)

(ii) Express the function $h(x) = e^{-x} \cosh x$ as a sum of odd and even functions. (2.5 marks)

d) Find: (i) the change in wavelength if a proton is scattered at an angle of 23° after its collision with an electron initially at rest (2.5 marks)

(ii) the wavelength of the wave associated with an electron moving at $10^6 m/s$.

(2.5 marks)

e) Discuss the following: Photoelectric effect (2 marks)

f) Compton effect (2 marks)

QUESTION 2

- a Write the function $h(x) = e^{2x} \sin x$ as a sum of odd and even functions. (4 marks)
- b Evaluate the following integrals

(i)
$$\int_{-a}^{a} x^{2n+1} dx$$
, $n = 0, 1, 2, ...$ (4 marks)

(j) (ii)
$$\int_{-a}^{a} x^{2n} dx, n = 0,1,2,...$$
 (4 marks)

QUESTION 3

- a Find the maximum kinetic energy with which an electron is emitted from a metal of work function 3.2×10^{-39} J when a radiation of energy $E = 3.313 \times 10^{-39}$ J falls on it, given that the work function is 3.2×10^{-39} J. (5 marks)
- b What value does Rayleigh-Jeans formula predict for the radiation of

Click to download more NOUN PQ from NounGeeks.com

frequency 6×10^{13} Hz emitted by a blackbody per unit time, per unit area at 2500 0 K. Compare this value with that predicted by Planck. (4 marks)

c Discuss Compton effect

(3 marks)

QUESTION 4

- a) If the matrix $\begin{bmatrix} 3 & x \\ 1 & 2 \end{bmatrix}$ is a proper orthogonal matrix, find x. (4 marks)
- b) Find the eigenvalues of the given matrices: (i) $\begin{bmatrix} 3 & -2 \\ 1 & 2 \end{bmatrix}$ (4marks)

(ii)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (4 marks)

QUESTION 5

Normalize the eigenfunction $\psi(x) = A \exp\left(-\frac{m\omega}{2\hbar}x^2\right)$. Hence, find the probability that the particle subjected to harmonic oscillation lies in the range $0 \le x \le \frac{1}{2}$. (12 marks)

QUESTION 6

A quantum-mechanical oscillator of mass m moves in one dimension such that its energy eigenstate $\psi(x) = (y^2/\pi)^{1/4} \exp(-y^2x^2/2)$ with $E = \hbar^2 y^2/2m$.

- (a) Find the mean position of the particle. (6 marks)
- (b) Find the mean momentum of the particle. (6 marks)