Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikiwe Express Way, Jabi-Abuja FACULTY OF SCIENCES January\February Examination 2018

Course Code: MTH417

Course Title: Electromagnetic Theory I

Credit Unit: 3

Time Allowed: 3Hours Total Marks: 70%

INSTRUCTION: ANSWER QUESTION ONE(1) AND ANY FOUR (4) QUESTIONS (TOTAL = 5 QUESTIONS IN ALL)

1(a) State the Maxwell's equations in a vaccum and in a conducting (3marks each=6marks)

(b) Define Average potential (2marks)

(c) The wave equation in a source free can be expressed as (i) $\nabla^2 E = \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2}$ (2marks)

(d) Define the following terms: waveguide and resonant cavity (2marks each=4marks)

(e) State Stoke's theorem (2marks)

(f) Explain the term "electrical ϕ " (2marks)

(g) State Gauss divergence theorem (4marks)

2(a) What is a line of force? (2marks)

(b) Show that $\nabla X E = -1/c \frac{\partial B}{\partial t}$ (10marks)

3 Find the magnetic induction B and appropriate condition on both E and B to satisfy

Maxwell's equations, if in a region of empty charges, current and magnetic

induction induced and electric E $E_x = 0, E_y = xzh(t), E_z = xyh(t)$ (12marks)

Click to download more NOUN PQ from NounGeeks.com

4(a) Use the Maxwell's equation to show that
$$\nabla^2 H = \frac{1}{c^2} \frac{\partial^2 H}{\partial t^2}$$
 (3marks)

- (b) The homogeneous wave equation as $\nabla^2 E + k^2 E = 0$ and $\nabla^2 H + k^2 H = 0$, hence solve equation in (b) above (9marks)
- 5(a) Derive an equation for transerve magnetic waves in a rectangular waveguide and solve the equation subject to the boundary conditions

$$E_x = (0, y) = 0, E_y = (a, y) = 0 \text{ and } E_z = (x, 0) = 0, E_z = (x, b) = 0$$
 (8marks)

- (b) Obtain:
- (i) the cutoff frequency (2marks)
- (ii) the cutoff wavelength and the lowest mode (5marks) (2marks)
- 6 (a) Explain the term "Force of attraction between two charges" (3 marks)
 - (b) Find the electric field between co-axial cylindrical capacitors given as $v = \begin{cases} v_0, \rho = a \\ 0, \rho = b \end{cases}$, also find the electric flux density \overrightarrow{D} and the capacitance. (9marks)