NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES

April/May Examination 2019

Course Code: MTH412

Course Title: Functional Analysis II

Credit Unit: 3

Time allowed: 3 HOURS Total: 70 Marks

Instruction: ATTEMPT NUMBER ONE (1) AND ANY OTHER FOUR (4) QUESTIONS

1. (a) Define Normed linear space.

(6marks)

- (b) Show that the real line \mathbb{R} becomes a norm linear space if you set $k \times k = |x|$ for every number $x \in \mathbb{R}$. (8marks)
- (c) Let $X = \mathbb{R}^2$ for each vector $\overline{X} = (x_1, x_2) \in X$ define $k k_2 : X \to \mathbb{R}$ by $k \overline{X} k_2 = \sum_{k=1}^2 (X_k^2)^{1/2}$. Then show that $k k_2$ is a norm space. (8marks)
- 2. (a) Define a linear map or operators.

(5marks)

- (b) Let $X=l_2$, for each $\bar{X}=(x_1,x_2,...x_k,...)$ in l_2 defined by $T\bar{X}=\left(0,x_1,\frac{x_2}{2},\frac{x_3}{2},...\right)$. Then show that T is a linear map on l_2 .
- 3. (a)Consider the basis $\{v_1 = (2,1), v_2 = (3,1)\}$ on \mathbb{R}^2 . Find the dual basis $\{f_1, f_2\}$ of \mathbb{R}^* . 5 marks (b) Let $\{u_1, u_2, \dots u_n\}$ be a basis of finite dimensional space X and let $\{\Phi_1, \Phi_2, \dots \Phi_n\}$ be the dual
 - (b) Let $\{u_1, u_2, ... u_n\}$ be a basis of finite dimensional space X and let $\{\Phi_1, \Phi_2, ... \Phi_n\}$ be the dual basis in X^* . Then show that
 - (i) For every vector $x \in X$, $x = \sum_{i=1}^{n} \Phi_k(x) u_k$
 - (ii) For any linear functional $\sigma \in X^*$, $\sigma = \sum_{i=1}^n \sigma(u_k) \Phi_k$.

(7marks)

4. (a) Define Equivalent norms.

(5marks)

(b) Prove that all norms defined on finite dimensional space are equivalent.

(7marks)

- 5. (a) Define the following (i) Uniformly convergent (ii) Uniformly continuity (iii) Graph of a linear operator. (5marks)
 - (b) Let T be an operator on Hilbert space H. Then prove that the following are equivalent
 - (i) $T^*T = I$ (ii) $hTx, Ty_i = hx, y_i$ (iii) kTxk = kxh for all $x \in H$.

(7marks)

6. (a) When is a normed linear space said to be complete?

(5marks)

(b) Show that the space C[a,b] of continuous real valued function on the interval [a,b] is complete.

(7marks)