Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES January/February Examination 2018

Course Code:	MTH411
Course Title:	Measure Theory & Integration
Credit Unit:	3
Time Allowed:	3 HOURS
Instruction:	ATTEMPT NUMBER ONE (1) AND ANY OTHER FOUR (4)

QUESTIONS

 1. (a) Let A⊂ [0, 1] be a non-measurable set. Let B ={ (x,0) ∈ R², x∈ A}. (i) Is B a Lebesgue measurable subset of R²? (ii) If the closure of E has Lebesgue measure zero, then E has Lebesgue measurezero. 	1mark 2marks
 (b). If f: [0,1]→ R is continuous a.e, then f is measurable. (i) Is the above statement true or false? (ii) Justify your answer in (i) above . 2m. 	1mark arks
(c). (i) Does there exist a non-measurable function such that \sqrt{f} is measurable? (ii) Justify your answer. 2m	1mark arks
 (d). There is a subset A of <i>R</i> which is not measurable, but such that B={x∈A: is measurable. (i) Is the above statement true or false? (ii) Justify your answer. 	x is irrational} 1mark 2marks
 (e). (i) Does there exist a non-measurable subset of <i>R</i> whose complement in <i>R</i> measure zero? (ii) Support your answer. 2m. 	has outer ark arks
(f). Let f_n be a sequence of continuous functions Lebesgueintegrable on $[0, \infty)$ converges uniformly to a function fLebesgueintegrable on $[0, \infty)$.) which

(i) Is it true that $\lim_{n \to \infty} \int_0^\infty f(x) - f_n(x) dx = 0$	1mark
(ii) Justify your answer	2½marks

(g) .Let { \int_k }be $\int_k \rightarrow \int a$ sequence of non-negative measurable function on **R** such that $\int_k \rightarrow \int a.e$

Click to download more NOUN PQ from NounGeeks.com

in **R**. Then $\lim_{K \to \infty} \int R \int_K$ exists and $\int R \int dm \leq \lim_{K \to \infty} \int R \int K dm$

- (i) Is the above statement true or false?
- (ii) Justify your answer.

1mark 2¹/2marks

- 2(a) Prove that if two subsets A and B of the real line are measurable, then so is $A \bigcap B$ (6marks)
- (b) Suppose f = g almost everywhere. Show that $\int_{\chi} f d\mu = \int_{\chi} g d\mu \qquad (6 marks)$

(TOTAL = 12marks)

- 3 (a) Explain vividly what is meant by the Lebesgue Outer Measure $\mu^*(E)$ of a subset E of the real line **R** 6marks
- (b) Prove that for any two subsets A and B of **R**, if A \subset B, then $\mu^*(A) \le \mu^*$ (B) (6marks)
- **4(a)** Explain carefully what is meant by the LebesqueOuter Measure $\mu^*(E)$ of a subset E of the real line **R 4marks**

(b) Prove that for any two subsets A and B of **R**, if A \subset B, then $\mu^*(A) \le \mu^*$ (B) 4marks

(c) Let $E_1, E_2, E_3..., E_n$ be disjoint measurable subset of E with $\mu(E) < \infty$, then

Every linear combination S = $\sum_{k=1}^{m} C_k \chi_{EK}$ with real coefficient a₁, a₂, a₃, . . . a_m is

measurable simple function and $I_{E}(s) = \sum_{k=1}^{m} a_{k} \mu(E_{k})$. 4marks

5(a) Find the length of the set
$$\bigcup_{k=1}^{\infty} \left\{ x : \frac{1}{k+1} \le x \le \frac{1}{k} \right\}$$
 4marks

(b) Prove that if E is any countable set of real numbers, the $\mu^*(E) = 0$

(c) Prove that for every countable family $\{E_n\}_{n=1}^{\infty}$ of subsets of **R**, we have $\mu^*\left(\bigcup_{n=1}^{\infty} E_n\right) \leq 1$

$$\sum_{n=1}^{\infty} \mu * (E_n)_{(.)}$$

6(a) Show that a subset E of **R'** is Lebesque measurable if and only if every subset X of **R'** we have $\mu^*(X) = \mu^*(X \cap E) + \mu^*(X \setminus E)$ 6marks

(b) Prove that if a subset E of R' is measurable, then so is its complement 6marks

4marks

4marks