Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIAN Plot 91, Cadastral Zone, NnamdiAzikiwe Express Way, Jabi-Abuja

FACULTY OF SCIENCES

January\February Examination 2018

Course Code:MTH401 Course Title: General Topology I Credit Unit: 3 Time Allowed: 3Hours Total Marks: 70%

INSTRUCTION: ANSWER QUESTION ONE(1) AND ANY FOUR (4) QUESTIONS (TOTAL = 5 QUESTIONS IN ALL)

1(a) Let p be a prime number, and d : $Z \times Z \rightarrow [0;+\infty)$ be a function defined by $d_p(x; y) = p^{-\max\{m \in \mathbb{N}: pm/x - y\}}$. (4marks)

1(b) Let (X, τ) be a topological and (Y, d) a metric space. If f, g : X \rightarrow Y are continuous, show that the set $\{x_1 \in X; f(x) = g(x)\}$ is closed. (4½marks)

- 1(c) Let (X; d) be a metric space and $F \subseteq X$ be a finite subset. Prove that F is closed in X. (2½marks)
- 1(d)Let R be endowed with standard topology. Show that for all x ϵ R,w = { (x ϵ ,x + ϵ), $\epsilon > 0$ } is a neighbourhood basis of x.(4½marks)
- 1(e) Let τ_1 and τ_2 be two topologies on the same space X.
 - (i) Show that $\tau_1 \subseteq \tau_2$ if and only if given $x \in \tau_1$ there exists $v \in \tau_2$ such that $x \in V \subseteq U$

(2½marks)

(ii) Show also that $\tau_1 = \tau_2$ if and only if given $x \in U \in \tau$ there exists $v \in \tau_2$ and $x \in V \subseteq U$ and given $x \in U \in \tau_2$, we can find $U \in \tau_2$ such that $x \in V = U$. **(4marks)**

(TOTAL=22marks)

2(a) Consider the interval [0, 1] with the Euclidean metric and $A = [0, 1] \cap Q$ with the inherited metric. Exhibit, and prove, a continuous map f: $A \rightarrow R$ (where R has the standard metric) such that the set { $x_1 \in X$; f(x) = g(x)} is closed (6marks)

MTH401

Click to download more NOUN RQ from NounGeeks.com

if there exist $V \subseteq X$ open (closed) in X such that $U = V \cap Y$. (6marks)

3(a)	Consider (R, τ) with the standard (Euclidean) topology, then show that a set E is compact if and	
only if it is closed, and bounded (that is, there exists an M such that		
	$ x \le M$ for all x $\varepsilon \in E$)	ōmarks)
3(b)	Let (X; d) be a metric spaceand; $\Phi \neq Y \subseteq X$. Prove that the function $X \rightarrow R$ defined is a continuous function. (6marks)	by $x \rightarrow d(x; Y)$
4(a)	If (X, τ) and (Y, σ) are Hausdorff topological spaces, then show that X x Y with topology is also Hausdorff. (4marks)	he product
4(b)	Show that the product of two Hausdorff spaces is Hausdorff (4marks)	
4(c)	Prove that a discrete metric space is compact if and only if its underlying set is finite (4marks)	
5(a)	Let { X_{α} } _{$\alpha\epsilon$} be an indexed family topological spaces. Assume that the topology on each	
	X_{α} is given by a basis B_{α} . Show that the family $\{\prod_{\alpha \in J} B_{\alpha} : B_{\alpha} \in B_{\alpha} \text{ and } B_{\alpha} = X_{\alpha} \text{ for all but finitely} $ many $\alpha \in J\}$ is a basis for the product topology $\prod_{\alpha \in J} X_{\alpha}$ (7marks)	
5(b)	Let X be a set and T = {U \subseteq X : U = Φ ; or X\U is countable}. Prove that T is a topolog (!	gy on X 5 marks)
6(a)	Let X be a set and B be a basis for a topology on X. Prove that the topology generated by B is indeed a topology.(3marks)	
6(b)	Let X be the set of all sequences x: $N \rightarrow R$ converging to zero. Show that:(3marks)	
	(i) The function d : X xX \rightarrow [0, + ∞] defined by d(x _n , y _n) = $\sup_{n \in \mathbb{N}} (x_n, y_n)$ is a metric	c on X

(3marks)

(ii) The metric space (X, d) is separable.

(3marks)