Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, NnamdiAzikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES January\February Examination 2018

Course Code: MTH381

Course Title: Mathematical Methods III

Credit Unit: 3

Time Allowed: 3 HOURS

Instruction: ATTEMPT NUMBER ONE (1) AND ANY OTHER FOUR (4) QUESTIONS

1. (a) If
$$f(x, y) = \frac{4x + 2y}{2 - 2xy}$$
; find $f(1,-3)$ [5 Marks]

(b) If
$$u = (x, y, z), v = x + y + z; w = x + y + z$$

Find the Jacobian
$$J = \frac{\delta(u, v, w)}{\delta(x, y, z)}$$
 [5 Marks]

(c) Evaluate the Laplace transform of $\cos \omega t$ [6 Marks]

Evaluate the double integral
$$I = \int_0^4 \int_y^{2y} (2x+3y) dx dy$$
 [6 Marks]

2. (a) Evaluate
$$\int_{-\pi i}^{\pi i} \cos z dz$$
 [6 Marks]

(b) Determine the Fourier Series to represent the function:

$$f(x) = \begin{cases} 0 & -\pi < x < -\frac{\pi}{2} \\ 3 & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ 0 & \frac{\pi}{2} < x < \pi \end{cases};$$
 [6 Marks]
$$f(x+2\pi) = f(x)$$

Click to download more NOUN PQ from NounGeeks.com

Given that $u(x, y) = e^{-x} \cos y$, show that u(x, y) is an harmonic function and then 3. find the function v(x, y) that is conjugate to u(x, y).

(Hint: find v(x, y) that ensures that f(x) = u(x, y) + iv(x, y) is analytic). [6 Marks]

State and prove Liouville's theorem. (b)

[6 Marks]

Evaluate $\iiint_R \left| \frac{xy - y^2}{z} \right| dxdydz$ where R is the rectangular box 4.

 $1 \le x \le 3, 0 \le y \le 2, and 1 \le z \le 2$, in space.

[4 Marks]

(b) If $z_1 = 3 + 5i$ and $z_2 = 2 + 3i$

Find (i) $z_1 + z_2$ (ii) $|z_1 + z_2|$ (iii) $\frac{z_2}{z_1}$ (iv) z_1 (v) $z_1 z_2$

[8 Marks]

5. (i) State the Green's theorem (a)

[2 Marks]

(ii) Let $M = xy^2$ and $N = x^4 + x^2y$ and let C be the circle $x^2 + y^2 = 1$ oriented anticlockwise;

Find $\int_C M(x, y)dx + N(x, y)dy$ by applying the Green's theorem.

[6 Marks]

(b) Evaluate $f(z) = \frac{1}{z^3 - z^4}$ around the circle C in the clockwise sense, where $|z| = \frac{1}{2}$

[6 Marks]

(a) Let F(x, y, z) = 6xi + 6yj + 4zk6.

Evaluate $\iiint_D div F(x, y, z) dv$ using the Divergence theorem, where D is the ball:

 $x^2 + v^2 + z^2 \le 1$ [6 Marks]

(b) Write the complex number z = x + iy in the polar form; hence find mod z and arg z.

[6 Marks]