NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, Nnamdi Azikwe Expressway, Jabi, Abuja. FACULTY OF SCIENCE AND TECHNOLOGY

April/May Examination 2019

COURSE CODE: MTH381

COURSE TITLE: MATHEMATICAL METHODS III
CREDIT UNIT: 3
TIME: 3 HOURS
Total:
70 Marks
INSTRUCTION: Attempt question One (1), and any other four questions.

Question 1

(a) If $f(x, y)=x^{2}-2 x y+y^{2}$

Find (i) $\quad f(1,-1)$
(ii) $\quad f(2,1)$
[2 marks each]
(b) If $u=x+y+z, v=x^{3}+y^{3}+z^{3}$ and $w=x y z$
find the Jacobian $J=\frac{\partial(u, v, w)}{\partial(x, y, z)}$
(c) Determine the Fourier series of the function defined by

$$
\begin{aligned}
f(x) & =2 x \\
f(x+2 \pi) & =f(x)
\end{aligned}
$$

(d) Express the following in polar from stating the modulus of the vector and argument (the principal) of the vector value:
(i) $1+i$
(ii) $-5+5 i$
[3 marks each]

Question 2

(a) Determine whether the following pair of functions are linearly dependent as the case may be
(i) $u(x)=x^{2}$, and $v(x)=3 x^{2}$
(ii) $u(x)=\cos 2 x$, and $v(x)=\sin 2 x$
(b) State the Residue theorem.

Click to download more NOUN PQ from NounGeeks.con

(c) Evaluate $\oint_{C} \frac{e}{(z+1)^{2}} d z$ where C is the circle $|z-1|=3$ [4 marks]

Question 3

(a) Determine the poles of the function
$\frac{z^{3}}{(z-1)^{3}(z+3)}$
And the residue at each pole.
(b) Verify divergence theorem for the vector field
$F=z i+y^{2} j+x k$
over the region bounded by the planes
$x=0, x=1, y=0, y=1, z=0$ and $z=1$.

Question 4

(a) If $f(x, y)=\frac{3 x+2 y}{4-2 x y}$

Find (i) $\quad f(0,1)$
(ii) $\quad f(1,3)$
[2 marks each]
(b) Using Laplace transformation, solve the initial value problem:

$$
\begin{equation*}
y^{\prime \prime}-3 y^{\prime}-2 y=4 t ; \quad y(0)=1 \text { and } y^{\prime}(0)=-1 \tag{8marks}
\end{equation*}
$$

Question 5

(a) Evaluate the double integral
(i) $\int_{y=1}^{y=2} \int_{x=0}^{x=3}\left(x^{2}+y\right) d x d y$
(ii) $\int_{1}^{2} \int_{1}^{3} x^{2} y d x d y$
[6 marks each]

Question 6

(a) If $A=\left(2 x^{2}+5 y\right) i-10 y z j+5 x z^{2} k$ evaluate $\int_{c} A \cdot d r$ from $(0,0,0)$ to $(1,1,1)$ along the following parts $\mathrm{C}: x=t, y=t^{2}$, and $z=t^{3}$

The straight lines from $(0,0,0)$ to $(1,0,0)$ then to $(1,1,0)$ and then to $(1,1,1)$.
The straight line joining ($0,0,0$) and ($1,1,1$).
(b) Given that $z_{1}=3-4 i \& z_{2}=-6+\boldsymbol{i}$; find (i) $z_{1} z_{2}$ (ii) $z_{1} / z_{2}[3$ marks each]

End of Examination questions.

