NATIONAL OPEN UNIVERSITY OF NIGERIA

Plot 91, Cadastral Zone, NnamdiAzikiwe Expressway, Jabi, Abuja.
FACULTY OF SCIENCES
January/February Examination 2018
Course Code:
Course Title:
MTH341
Credit Unit:
Time Allowed:
Instruction:

REAL ANALYSIS II

3
3 HOURS
ATTEMPT NUMBER ONE (1) AND ANY OTHER FOUR (4) QUESTIONS

1. (a) State and prove the Lagrange's Mean Value theorem
(b) Verify Rolle 's Theorem for the functions in
(i) $f(x)=(x+2)^{3}(x-3)^{4}$ in $[-2,3]$
(5 Marks)
(ii) $f(x)=1-(x-3)^{\frac{2}{3}}$ in $(2,4)$
(5 Marks)
(c) (i) Verify whether or not Rolle's theorem can be verified for $f(x)=\frac{x^{2}-4 x}{x+2}$ lying in (0,4).
(5 Marks)
(ii) What is the point of discontinuity $f(x)=\frac{x^{2}-4 x}{x+2}$?
(4 Marks)
2. (a) Separate the intervals in which the polynomial $f(x)=\left(4-x^{2}\right)^{2}$ is increasing or decreasing.
(3 Marks)
(b) (i) Show that, for any $x \geq 0,1+x<e^{x}<1+x e^{x}$
(5 Marks)
(ii) Verify Lagrange's Mean Value theorem for the functions $x(x-1)(x-2)$ in ($0,1 / 2$) (4 Marks)
3. (a) Verify Cauchy's mean value theorem for the functions $f(x)=\ln x, g(x)=\frac{1}{x}$ in $[1, \mathrm{e}]$
(b) Calculate approximately $\sqrt[5]{245}$ by using Lagrange's Mean Value theorem

Click to download more NOUN PQ from NounGeeks.com

4. Evaluate the following limits
(i) $\lim \left(x^{2}+1\right)\left(x^{3}-4\right)$ as x tends to 2
(ii) $\quad \lim \frac{x^{2}-4}{3 x-6}$ as x tends to 2
(iii) $\lim \left(\frac{\cos x-1}{x}\right)$ as x tends to zero
(iv) $\lim \left(\frac{\sin x}{x}\right)$ as x tends to zero
(3marks each)
5. (a) Find the first 3 terms in the Taylor series for
(i) $\ln x$ at $\mathrm{x}=1$
(ii) $3 x^{5}-x^{4}+2 x^{3}+x^{2}-2$ at $\mathrm{x}=-1$
(a) Find the first 3 terms in the Maclaurin's series for (i) $\sin 2 x$

$$
\begin{aligned}
& \text { (ii) } \frac{x}{\sqrt{1-x^{2}}} \\
& \text { (iii) } x e^{-x}
\end{aligned}
$$

6. (a) (i) Find the nature of the stationary points for the function $y=3 x^{4}-8 x^{3}+6 x^{2}+5$
(ii) Find the maximum and minimum values of $3 \sin x+4 \cos x$, and values of $\mathrm{x}\left(0^{0} \leq x \leq 360^{\circ}\right)$ where they occur
(b) Find the maximum and minimum values of $f(x, y)=x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$
(4 Marks)
