Click to download more NOUN PQ from NounGeeks.com

NATIONAL OPEN UNIVERSITY OF NIGERIA Plot 91, Cadastral Zone, Nnamdi Azikiwe Expressway, Jabi, Abuja.

FACULTY OF SCIENCES January\February Examination 2018

CODE:MTH 311 TIME: 3 HOURS TITLE: CALCULUS OF SEVERAL VARIABLES CREDIT UNIT: 3

TOTAL: 70 MARKS

INSTRUCTION: QUESTION ONE (1) IS COMPULSORY AND ATTEMPT ANY OTHER 4

1a) Define the following;

i) A real-valued function of two variables?

- ii) Partial derivative of a function of two or more variables with respect to one of its variables
- iii) Total derivative of the function (x, y, z, ..., u). Hence evaluate the total derivatives of $F(x, y, z) = 4x^2y^3 + z^2$ and $F(x, y, z) = 2x^2y^3 3z^2$
- b) Let f be a function defined by $f(x, y) = (x^2 + y, xy)$. Find i) f(2,3) ii) f(3,2) iii) f(-2,-3)
- c) State the Clairaut's Theorem. Verify the theorem with $F(x,y) = y^2 e^{2x} + \cos 4y$ 18marks
- 2) Let f, g and h be functions defined by f(x) = 7x 3, g(x) = x + 2 and $h(x) = 3x^2 7x 5$. Find:

i)
$$h(x-2)$$
 ii) $f(g(x))$ iii) $g(f(x))$ iv) $(f+g)(x)$ v) $h(g(f(x)))$ 13marks

3) Let $x = r \cos \theta$ and $y = r \sin \theta$. What is the Jacobian determinant (r, θ) ? **5marks** Obtain the Jacobian determinant such that

$$y_1 = 5x_2$$
; $y_2 = 4x_1 - 2\sin(x_2x_3)$ and $y_3 = x_2x_3$ 8marks

Click to download more NOUN PQ from NounGeeks.com

- 4a) Find f_{xx} , f_{xy} , f_{yx} , f_{yy} of the following:
 - i) $f = 2x^3 xy^2 y^4$ 3marks
 - ii) $f = 3e^{-xy} y\cos x$ 3marks
 - b) Let $z = e^{\cos x^2}$. Solve $\frac{dz}{dx}$ by the chain rule. **7marks**
- 5) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for each of the following implicit functions:
 - i) $z^2 2x^4yz^3 = 3x^3 y^2$ 6 marks
 - ii) $y \cos(4xz) = 2z^3 x^2 \sin(2xy)$ 7marks
- **6 a)** Compute a second order Taylor Series expansion around the origin of the function $f(x,y) = e^x \log(1+y)$ 3.5marks
- **b)** State the i) necessary ii) sufficient conditions for a maxima or minima of the function:

$$z = f(x, y)$$
. 5marks

c) Hence find the maxima and minima of the function $z = 2x^2 + xy - y^2 + y$ 4.5marks